37

10007825

Numerical Investigation of Multiphase Flow in Pipelines

We present and analyze reliable numerical techniques
for simulating complex flow and transport phenomena related to
natural gas transportation in pipelines. Such kind of problems
are of high interest in the field of petroleum and environmental
engineering. Modeling and understanding natural gas flow and
transformation processes during transportation is important for the
sake of physical realism and the design and operation of pipeline
systems. In our approach a two fluid flow model based on a system
of coupled hyperbolic conservation laws is considered for describing
natural gas flow undergoing hydratization. The accurate numerical
approximation of two-phase gas flow remains subject of strong
interest in the scientific community. Such hyperbolic problems are
characterized by solutions with steep gradients or discontinuities, and
their approximation by standard finite element techniques typically
gives rise to spurious oscillations and numerical artefacts. Recently,
stabilized and discontinuous Galerkin finite element techniques
have attracted researchers’ interest. They are highly adapted to the
hyperbolic nature of our two-phase flow model. In the presentation
a streamline upwind Petrov-Galerkin approach and a discontinuous
Galerkin finite element method for the numerical approximation of
our flow model of two coupled systems of Euler equations are
presented. Then the efficiency and reliability of stabilized continuous
and discontinous finite element methods for the approximation is
carefully analyzed and the potential of the either classes of numerical
schemes is investigated. In particular, standard benchmark problems
of two-phase flow like the shock tube problem are used for the
comparative numerical study.

36

10007759

A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method

Two-phase and multi-phase flows are common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, two-phase parallel flow is the one that two immiscible fluids flow in the vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) are different at the two sides of the interface of the two fluids. The most challenging part of the numerical simulation of two-phase flow is to determine the location of interface accurately. In the present work, a coupled interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based, coupled solver. To validate this algorithm, an analytical solution for fully developed two-phase flow in presence of gravity is derived, and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that a greater difference between fluids properties (especially dynamic viscosity) will result in larger traveling waves. Gravity effect studies also show that favorable gravity will result in a reduction of heavier fluid thickness and adverse gravity leads to increasing it with respect to the zero gravity condition. However, the magnitude of variation in favorable gravity is much more than adverse gravity.

35

10007790

Simulation of Ammonia-Water Two Phase Flow in Bubble Pump

The diffusion-absorption refrigeration cycle consists of a generator bubble pump, an absorber, an evaporator and a condenser, and usually operates with ammonia/water/ hydrogen or helium as the working fluid. The aim of this paper is to study the stability problem a bubble pump. In fact instability can caused a reduction of bubble pump efficiency. To achieve this goal, we have simulated the behaviour of two-phase flow in a bubble pump by using a drift flow model. Equations of a drift flow model are formulated in the transitional regime, non-adiabatic condition and thermodynamic equilibrium between the liquid and vapour phases. Equations resolution allowed to define void fraction, and liquid and vapour velocities, as well as pressure and mixing enthalpy. Ammonia-water mixing is used as working fluid, where ammonia mass fraction in the inlet is 0.6. Present simulation is conducted out for a heating flux of 2 kW/m² to 5 kW/m² and bubble pump tube length of 1 m and 2.5 mm of inner diameter. Simulation results reveal oscillations of vapour and liquid velocities along time. Oscillations decrease with time and with heat flux. For sufficient time the steady state is established, it is characterised by constant liquid velocity and void fraction values. However, vapour velocity does not have the same behaviour, it increases for steady state too. On the other hand, pressure drop oscillations are studied.

34

10006622

Experimental and Graphical Investigation on Oil Recovery by Buckley-Leveret Theory

Recently increasing oil production from petroleum reservoirs is one of the most important issues in the global energy sector. So, in this paper, the recovery of oil by the waterflooding technique from petroleum reservoir are considered. To investigate the aforementioned phenomena, the relative permeability of two immiscible fluids in sand is measured in the laboratory based on the steady-state method. Two sorts of oils, kerosene and heavy oil, and water are pumped simultaneously into a vertical sand column with different pumping ratio. From the change in fractional discharge measured at the outlet, a method for determining the relative permeability is developed focusing on the displacement mechanism in sand. Then, displacement mechanism of two immiscible fluids in the sand is investigated under the Buckley-Leveret frontal displacement theory and laboratory experiment. Two sorts of experiments, one is the displacement of pore water by oil, the other is the displacement of pore oil by water, are carried out. It is revealed that the relative permeability curves display tolerably different shape owing to the properties of oils, and produce different amount of residual oils and irreducible water saturation.

33

10004794

The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems

Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.

32

10003659

Streamwise Vorticity in the Wake of a Sliding Bubble

In many practical situations, bubbles are dispersed in a
liquid phase. Understanding these complex bubbly flows is therefore
a key issue for applications such as shell and tube heat exchangers,
mineral flotation and oxidation in water treatment. Although a large
body of work exists for bubbles rising in an unbounded medium,
that of bubbles rising in constricted geometries has received less
attention. The particular case of a bubble sliding underneath an
inclined surface is common to two-phase flow systems. The current
study intends to expand this knowledge by performing experiments
to quantify the streamwise flow structures associated with a single
sliding air bubble under an inclined surface in quiescent water. This
is achieved by means of two-dimensional, two-component particle
image velocimetry (PIV), performed with a continuous wave laser
and high-speed camera. PIV vorticity fields obtained in a plane
perpendicular to the sliding surface show that there is significant bulk
fluid motion away from the surface. The associated momentum of the
bubble means that this wake motion persists for a significant time
before viscous dissipation. The magnitude and direction of the flow
structures in the streamwise measurement plane are found to depend
on the point on its path through which the bubble enters the plane.
This entry point, represented by a phase angle, affects the nature and
strength of the vortical structures. This study reconstructs the vorticity
field in the wake of the bubble, converting the field at different
instances in time to slices of a large-scale wake structure. This is, in
essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the
vorticity fields provides a pseudo three-dimensional representation
from 2-D data, allowing for a more intuitive understanding of the
bubble wake. This study provides insights into the complex dynamics
of a situation common to many engineering applications, particularly
shell and tube heat exchangers in the nucleate boiling regime.

31

10003667

Prediction of Air-Water Two-Phase Frictional Pressure Drop Using Artificial Neural Network

The present paper discusses the prediction of gas-liquid two-phase frictional pressure drop in a 2.12 mm horizontal circular minichannel using Artificial Neural Network (ANN). The experimental results are obtained with air as gas phase and water as liquid phase. The superficial gas velocity is kept in the range of 0.0236 m/s to 0.4722 m/s while the values of 0.0944 m/s, 0.1416 m/s and 0.1889 m/s are considered for superficial liquid velocity. The experimental results are predicted using different Artificial Neural Network (ANN) models. Networks used for prediction are radial basis, generalised regression, linear layer, cascade forward back propagation, feed forward back propagation, feed forward distributed time delay, layer recurrent, and Elman back propagation. Transfer functions used for networks are Linear (PURELIN), Logistic sigmoid (LOGSIG), tangent sigmoid (TANSIG) and Gaussian RBF. Combination of networks and transfer functions give different possible neural network models. These models are compared for Mean Absolute Relative Deviation (MARD) and Mean Relative Deviation (MRD) to identify the best predictive model of ANN.

30

10002904

A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor

A Multi-dimensional computational fluid dynamics
(CFD) two-phase model was developed with the aim to simulate
the in-core coolant circuit of a pressurized heavy water reactor
(PHWR) of a commercial nuclear power plant (NPP). Due to the
fact that this PHWR is a Reactor Pressure Vessel type (RPV),
three-dimensional (3D) detailed modelling of the large reservoirs of
the RPV (the upper and lower plenums and the downcomer) were
coupled with an in-house finite volume one-dimensional (1D) code
in order to model the 451 coolant channels housing the nuclear fuel.
Regarding the 1D code, suitable empirical correlations for taking into
account the in-channel distributed (friction losses) and concentrated
(spacer grids, inlet and outlet throttles) pressure losses were used.
A local power distribution at each one of the coolant channels
was also taken into account. The heat transfer between the coolant
and the surrounding moderator was accurately calculated using a
two-dimensional theoretical model. The implementation of subcooled
boiling and condensation models in the 1D code along with the use
of functions for representing the thermal and dynamic properties of
the coolant and moderator (heavy water) allow to have estimations
of the in-core steam generation under nominal flow conditions for a
generic fission power distribution. The in-core mass flow distribution
results for steady state nominal conditions are in agreement with the
expected from design, thus getting a first assessment of the coupled
1/3D model. Results for nominal condition were compared with
those obtained with a previous 1/3D single-phase model getting more
realistic temperature patterns, also allowing visualize low values of
void fraction inside the upper plenum. It must be mentioned that the
current results were obtained by imposing prescribed fission power
functions from literature. Therefore, results are showed with the aim
of point out the potentiality of the developed model.

29

10002885

Numerical Simulation of Three-Dimensional Cavitating Turbulent Flow in Francis Turbines with ANSYS

In this study, the three-dimensional cavitating
turbulent flow in a complete Francis turbine is simulated using
mixture model for cavity/liquid two-phase flows. Numerical analysis
is carried out using ANSYS CFX software release 12, and standard k-ε
turbulence model is adopted for this analysis. The computational
fluid domain consist of spiral casing, stay vanes, guide vanes, runner
and draft tube. The computational domain is discretized with a threedimensional
mesh system of unstructured tetrahedron mesh. The
finite volume method (FVM) is used to solve the governing equations
of the mixture model. Results of cavitation on the runner’s blades
under three different boundary conditions are presented and
discussed. From the numerical results it has been found that the
numerical method was successfully applied to simulate the cavitating
two-phase turbulent flow through a Francis turbine, and also
cavitation is clearly predicted in the form of water vapor formation
inside the turbine. By comparison the numerical prediction results
with a real runner; it’s shown that the region of higher volume
fraction obtained by simulation is consistent with the region of runner
cavitation damage.

28

10001690

Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method

Steady three-dimensional and two free surface waves
generated by moving bodies are presented, the flow problem to be
simulated is rich in complexity and poses many modeling challenges
because of the existence of breaking waves around the ship hull, and
because of the interaction of the two-phase flow with the turbulent
boundary layer. The results of several simulations are reported. The
first study was performed for NACA0012 of hydrofoil with different
meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second
simulation a mathematically defined Wigley hull form is used to
investigate the application of a commercial CFD code in prediction of
the total resistance and its components from tangential and normal
forces on the hull wetted surface. The computed resistance and wave
profiles are used to estimate the coefficient of the total resistance for
Wigley hull advancing in calm water under steady conditions. The
commercial CFD software FLUENT version 12 is used for the
computations in the present study. The calculated grid is established
using the code computer GAMBIT 2.3.26. The shear stress k-ωSST
model is used for turbulence modeling and the volume of fluid
technique is employed to simulate the free-surface motion. The
second order upwind scheme is used for discretizing the convection
terms in the momentum transport equations, the Modified HRIC
scheme for VOF discretization. The results obtained compare well
with the experimental data.

27

10001709

Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method

Steady three-dimensional and two free surface waves
generated by moving bodies are presented, the flow problem to be
simulated is rich in complexity and poses many modeling challenges
because of the existence of breaking waves around the ship hull, and
because of the interaction of the two-phase flow with the turbulent
boundary layer. The results of several simulations are reported. The
first study was performed for NACA0012 of hydrofoil with different
meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second
simulation a mathematically defined Wigley hull form is used to
investigate the application of a commercial CFD code in prediction of
the total resistance and its components from tangential and normal
forces on the hull wetted surface. The computed resistance and wave
profiles are used to estimate the coefficient of the total resistance for
Wigley hull advancing in calm water under steady conditions. The
commercial CFD software FLUENT version 12 is used for the
computations in the present study. The calculated grid is established
using the code computer GAMBIT 2.3.26. The shear stress k-ωSST
model is used for turbulence modeling and the volume of fluid
technique is employed to simulate the free-surface motion. The
second order upwind scheme is used for discretizing the convection
terms in the momentum transport equations, the Modified HRIC
scheme for VOF discretization. The results obtained compare well
with the experimental data.

26

9998156

An Experimental Investigation on the Droplet Behavior Impacting a Hot Surface above the Leidenfrost Temperature

An appropriate model to predict the size of the droplets resulting from the break-up with the structures will help in a better understanding and modeling of the two-phase flow calculations in the simulation of a reactor core loss-of-coolant accident (LOCA). A droplet behavior impacting on a hot surface above the Leidenfrost temperature was investigated. Droplets of known size and velocity were impacted to an inclined plate of hot temperature, and the behavior of the droplets was observed by a high-speed camera. It was found that for droplets of Weber number higher than a certain value, the higher the Weber number of the droplet the smaller the secondary droplets. The COBRA-TF model over-predicted the measured secondary droplet sizes obtained by the present experiment. A simple model for the secondary droplet size was proposed using the mass conservation equation. The maximum spreading diameter of the droplets was also compared to previous correlations and a fairly good agreement was found. A better prediction of the heat transfer in the case of LOCA can be obtained with the presented model.

25

9999287

Oil-Water Two-Phase Flow Characteristics in Horizontal Pipeline – A Comprehensive CFD Study

In the present work, detailed analysis on flow characteristics of a pair of immiscible liquids through horizontal pipeline is simulated by using ANSYS FLUENT 6.2. Moderately viscous oil and water (viscosity ratio = 107, density ratio = 0.89 and interfacial tension = 0.024 N/m) have been taken as system fluids for the study. Volume of Fluid (VOF) method has been employed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, and co-axial flow. Meshing has been done using GAMBIT. Quadrilateral mesh type has been chosen to account for the surface tension effect more accurately. From the grid independent study, we have selected 47037 number of mesh elements for the entire geometry. Simulation successfully predicts slug, stratified wavy, stratified mixed and annular flow, except dispersion of oil in water, and dispersion of water in oil. Simulation results are validated with horizontal literature data and good conformity is observed. Subsequently, we have simulated the hydrodynamics (viz., velocity profile, area average pressure across a cross section and volume fraction profile along the radius) of stratified wavy and annular flow at different phase velocities. The simulation results show that in the annular flow, total pressure of the mixture decreases with increase in oil velocity due to the fact that pipe cross section is completely wetted with water. Simulated oil volume fraction shows maximum at the centre in core annular flow, whereas, in stratified flow, maximum value appears at upper side of the pipeline. These results are in accord with the actual flow configuration. Our findings could be useful in designing pipeline for transportation of crude oil.

24

17266

Analysis of Liquid Nitrogen Spray Atomization Characteristics by Internal-Mixing Atomizers

The atomization effect is an important factor of the heat transfer of liquid nitrogen spray. In this paper, two kinds of internal-mixing twin-fluid atomizers were design. According to the fracture theory and fluid mechanics, the model is established to simulate atomization effect. The results showed that: Internal-mixing atomizers, with the liquid nitrogen atomization size from 20um to 40um, have superior performance. Y-jet atomizer spray speed is greater than Multi-jet atomizer, and it can improve the efficiency of heat transfer between the liquid nitrogen and its spray object. Multi-jet atomizer atomization cone angle is about 30°, Y-jet atomizer atomization cone angle is about 20°. During atomizer selection, the size of the heat transfer area should be considered.

23

12121

Two Phase Frictional Pressure Drop of Carbon Dioxide in Horizontal Micro Tubes

Two-phase frictional pressure drop data were
obtained for condensation of carbon dioxide in single horizontal
micro tube of inner diameter ranged from 0.6 mm up to 1.6 mm over
mass flow rates from 2.5*10-5 to 17*10-5 kg/s and vapor qualities
from 0.0 to 1.0. The inlet condensing pressure is changed from 33.5
to 45 bars. The saturation temperature ranged from -1.5 oC up to 10
oC. These data have then been compared against three (two-phase)
frictional pressure drop prediction methods. The first method is by
Muller-Steinhagen and Heck (Muller-Steinhagen H, Heck K. A
simple friction pressure drop correlation for two-phase flow in pipes.
Chem. Eng. Process 1986;20:297–308) and that by Gronnerud R.
Investigation of liquid hold-up, flow-resistance and heat transfer in
circulation type evaporators, part IV: two-phase flow resistance in
boiling refrigerants, Annexe 1972. Then the method used by
FriedelL. Improved friction pressures drop in horizontal and vertical
two-phase pipe flow. European Two-Phase Flow Group Meeting,
Paper E2; 1979 June, Ispra, Italy. The methods are used by M.B Ould
Didi et al (2001) “Prediction of two-phase pressure gradients of
refrigerant in horizontal tubes". Int.J.of Refrigeration 25(2002) 935-
947. The best available method for annular flow was that of Muller-
Steinhagen and Heck. It was observed that the peak in the two-phase
frictional pressure gradient is at high vapor qualities.

22

15661

CFD Simulation and Validation of Flow Pattern Transition Boundaries during Moderately Viscous Oil-Water Two-Phase Flow through Horizontal Pipeline

In the present study, computational fluid dynamics
(CFD) simulation has been executed to investigate the transition
boundaries of different flow patterns for moderately viscous oil-water
(viscosity ratio 107, density ratio 0.89 and interfacial tension of 0.032
N/m.) two-phase flow through a horizontal pipeline with internal
diameter and length of 0.025 m and 7.16 m respectively. Volume of
Fluid (VOF) approach including effect of surface tension has been
employed to predict the flow pattern. Geometry and meshing of the
present problem has been drawn using GAMBIT and ANSYS
FLUENT has been used for simulation. A total of 47037 quadrilateral
elements are chosen for the geometry of horizontal pipeline. The
computation has been performed by assuming unsteady flow,
immiscible liquid pair, constant liquid properties, co-axial flow and a
T-junction as entry section. The simulation correctly predicts the
transition boundaries of wavy stratified to stratified mixed flow.
Other transition boundaries are yet to be simulated. Simulated data
has been validated with our own experimental results.

21

3925

The Analysis of Two-Phase Jet in Pneumatic Powder Injection into Liquid Alloys

The results of the two-phase gas-solid jet in pneumatic
powder injection process analysis were presented in the paper. The
researches were conducted on model set-up with high speed camera
jet movement recording. Then the recorded material was analyzed to
estimate main particles movement parameters. The values obtained
from this direct measurement were compared to those calculated with
the use of the well-known formulas for the two-phase flows
(pneumatic conveying). Moreover, they were compared to
experimental results previously achieved by authors. The analysis led
to conclusions which to some extent changed the assumptions used
even by authors, regarding the two-phase jet in pneumatic powder
injection process. Additionally, the visual analysis of the recorded
clips supplied data to make a more complete evaluation of the jet
behavior in the lance outlet than before.

20

4585

Numerical Analysis of Oil-Water Transport in Horizontal Pipes Using 1D Transient Mathematical Model of Thermal Two-Phase Flows

The paper presents a one-dimensional transient
mathematical model of thermal oil-water two-phase emulsion flows
in pipes. The set of the mass, momentum and enthalpy conservation
equations for the continuous fluid and droplet phases are solved. Two
friction correlations for the continuous fluid phase to wall friction are
accounted for in the model and tested. The aerodynamic drag force
between the continuous fluid phase and droplets is modeled, too. The
density and viscosity of both phases are assumed to be constant due
to adiabatic experimental conditions. The proposed mathematical
model is validated on the experimental measurements of oil-water
emulsion flows in horizontal pipe [1,2]. Numerical analysis on
single- and two-phase oil-water flows in a pipe is presented in the
paper. The continuous oil flow having water droplets is simulated.
Predictions, which are performed by using the presented model, show
excellent agreement with the experimental data if the water fraction is
equal or less than 10%. Disagreement between simulations and
measurements is increased if the water fraction is larger than 10%.

19

8534

On the Numerical Approach for Simulating Thermal Hydraulics under Seismic Condition

The two-phase flow field and the motion of the free
surface in an oscillating channel are simulated numerically to assess
the methodology for simulating nuclear reacotr thermal hydraulics
under seismic conditions. Two numerical methods are compared: one
is to model the oscillating channel directly using the moving grid of
the Arbitrary Lagrangian-Eulerian method, and the other is to simulate
the effect of channel motion using the oscillating acceleration acting
on the fluid in the stationary channel. The two-phase flow field in the
oscillating channel is simulated using the level set method in both
cases. The calculated results using the oscillating acceleration are
found to coinside with those using the moving grid, and the theoretical
back ground and the limitation of oscillating acceleration are discussed.
It is shown that the change in the interfacial area between liquid and
gas phases under seismic conditions is important for nuclear reactor
thermal hydraulics.

18

3195

Effect of Various Nozzle Profiles on Performance of a Two Phase Flow Jet Pump

This paper reports on the results of experimental investigations on the performance of a jet pump operated under selected primary flows to optimize the related parameters. For this purpose a two-phase flow jet pump was used employing various profiles of nozzles as the primary device which was designed, fabricated and used along with the combination of mixing tube and diffuser. The profiles employed were circular, conical, and elliptical. The diameter of the nozzle used was 4 mm. The area ratio of the jet pump was 0.16. The test facility created for this purpose was an open loop continuous circulation system. Performance of the jet pump was obtained as iso-efficiency curves on characteristic curves drawn for various water flow rates. To perform the suction capability, evacuation test was conducted at best efficiency point for all the profiles.

17

12576

Nonlinear Thermal Hydraulic Model to Analyze Parallel Channel Density Wave Instabilities in Natural Circulation Boiling Water Reactor with Asymmetric Power Distribution

The paper investigates parallel channel instabilities of
natural circulation boiling water reactor. A thermal-hydraulic model
is developed to simulate two-phase flow behavior in the natural circulation boiling water reactor (NCBWR) with the incorporation of
ex-core components and recirculation loop such as steam separator, down-comer, lower-horizontal section and upper-horizontal section
and then, numerical analysis is carried out for parallel channel
instabilities of the reactor undergoing both in-phase and out-of-phase
modes of oscillations. To analyze the relative effect on stability of the reactor due to inclusion of various ex-core components and
recirculation loop, marginal stable point is obtained at a particular inlet enthalpy of the reactor core without the inclusion of ex-core
components and recirculation loop and then with the inclusion of the
same. Numerical simulations are also conducted to determine the
relative dominance between two modes of oscillations i.e. in-phase and out-of-phase. Simulations are also carried out when the channels
are subjected to asymmetric power distribution keeping the inlet enthalpy same.

16

8401

Simulation of Sloshing behavior using Moving Grid and Body Force Methods

The flow field and the motion of the free surface in an
oscillating container are simulated numerically to assess the numerical
approach for studying two-phase flows under oscillating conditions.
Two numerical methods are compared: one is to model the oscillating
container directly using the moving grid of the ALE method, and the
other is to simulate the effect of container motion using the oscillating
body force acting on the fluid in the stationary container. The
two-phase flow field in the container is simulated using the level set
method in both cases. It is found that the calculated results by the body
force method coinsides with those by the moving grid method and the
sloshing behavior is predicted well by both the methods. Theoretical
back ground and limitation of the body force method are discussed,
and the effects of oscillation amplitude and frequency are shown.

15

11760

Use of Time-Depend Effects for Mixing and Separation of the Two-Phase Flows

The paper shows some ability to manage two-phase
flows arising from the use of unsteady effects. In one case, we
consider the condition of fragmentation of the interface between the
two components leads to the intensification of mixing. The problem
is solved when the temporal and linear scale are small for the
appearance of the developed mixing layer. Showing that exist such
conditions for unsteady flow velocity at the surface of the channel,
which will lead to the creation and fragmentation of vortices at Re
numbers of order unity. Also showing that the Re is not a criterion of
similarity for this type of flows, but we can introduce a criterion that
depends on both the Re, and the frequency splitting of the vortices. It
turned out that feature of this situation is that streamlines behave
stable, and if we analyze the behavior of the interface between the
components it satisfies all the properties of unstable flows. The other
problem we consider the behavior of solid impurities in the extensive
system of channels. Simulated unsteady periodic flow modeled
breaths. Consider the behavior of the particles along the trajectories.
It is shown that, depending on the mass and diameter of the particles,
they can be collected in a caustic on the channel walls, stop in a
certain place or fly back. Of interest is the distribution of particle
velocity in frequency. It turned out that by choosing a behavior of the
velocity field of the carrier gas can affect the trajectory of individual
particles including force them to fly back.

14

7269

Slug Tracking Simulation of Severe Slugging Experiments

Experimental data from an atmospheric air/water terrain slugging case has been made available by the Shell Amsterdam research center, and has been subject to numerical simulation and comparison with a one-dimensional two-phase slug tracking simulator under development at the Norwegian University of Science and Technology. The code is based on tracking of liquid slugs in pipelines by use of a Lagrangian grid formulation implemented in Cµ by use of object oriented techniques. An existing hybrid spatial discretization scheme is tested, in which the stratified regions are modelled by the two-fluid model. The slug regions are treated incompressible, thus requiring a single momentum balance over the whole slug. Upon comparison with the experimental data, the period of the simulated severe slugging cycle is observed to be sensitive to slug generation in the horizontal parts of the system. Two different slug initiation methods have been tested with the slug tracking code, and grid dependency has been investigated.

13

2744

GPU Implementation for Solving in Compressible Two-Phase Flows

A one-step conservative level set method, combined with a global mass correction method, is developed in this study to simulate the incompressible two-phase flows. The present framework do not need to solve the conservative level set scheme at two separated steps, and the global mass can be exactly conserved. The present method is then more efficient than two-step conservative level set scheme. The dispersion-relation-preserving schemes are utilized for the advection terms. The pressure Poisson equation solver is applied to GPU computation using the pCDR library developed by National Center for High-Performance Computing, Taiwan. The SMP parallelization is used to accelerate the rest of calculations. Three benchmark problems were done for the performance evaluation. Good agreements with the referenced solutions are demonstrated for all the investigated problems.

12

3553

Comparison of Three Turbulence Models in Wear Prediction of Multi-Size Particulate Flow through Rotating Channel

The present work compares the performance of three
turbulence modeling approach (based on the two-equation k -ε
model) in predicting erosive wear in multi-size dense slurry flow
through rotating channel. All three turbulence models include
rotation modification to the production term in the turbulent kineticenergy
equation. The two-phase flow field obtained numerically
using Galerkin finite element methodology relates the local flow
velocity and concentration to the wear rate via a suitable wear model.
The wear models for both sliding wear and impact wear mechanisms
account for the particle size dependence. Results of predicted wear
rates using the three turbulence models are compared for a large
number of cases spanning such operating parameters as rotation rate,
solids concentration, flow rate, particle size distribution and so forth.
The root-mean-square error between FE-generated data and the
correlation between maximum wear rate and the operating
parameters is found less than 2.5% for all the three models.

11

6166

Numerical Simulation of Cavitation and Aeration in Discharge Gated Tunnel of a Dam Based on the VOF Method

Cavitation, usually known as a destructive
phenomenon, involves turbulent unsteady two-phase flow. Having
such features, cavitating flows have been turned to a challenging
topic in numerical studies and many researches are being done for
better understanding of bubbly flows and proposing solutions to
reduce its consequent destructive effects. Aeration may be regarded
as an effective protection against cavitation erosion in many
hydraulic structures, like gated tunnels. The paper concerns
numerical simulation of flow in discharge gated tunnel of a dam
using ing RNG k -ε model coupled with the volume of fluid (VOF)
method and the zone which is susceptible of cavitation inception in
the tunnel is predicted. In the second step, a vent is considered in the
mentioned zone for aeration and the numerical simulation is done
again to study the effects of aeration. The results show that aeration
is an impressively useful method to exclude cavitation in mentioned
tunnels.

10

9459

Pressure Induced Isenthalpic Oscillations with Condensation and Evaporation in Saturated Two-Phase Fluids

Saturated two-phase fluid flows are often subject to
pressure induced oscillations. Due to compressibility the vapor
bubbles act as a spring with an asymmetric non-linear characteristic.
The volume of the vapor bubbles increases or decreases differently if
the pressure fluctuations are compressing or expanding;
consequently, compressing pressure fluctuations in a two-phase pipe
flow cause less displacement in the direction of the pipe flow than
expanding pressure fluctuations. The displacement depends on the
ratio of liquid to vapor, the ratio of pressure fluctuations over average
pressure and on the exciting frequency of the pressure fluctuations.
In addition, pressure fluctuations in saturated vapor bubbles cause
condensation and evaporation within the bubbles and change
periodically the ratio between liquid to vapor, and influence the
dynamical parameters for the oscillation. The oscillations are
conforming to an isenthalpic process at constant enthalpy with no
heat transfer and no exchange of work.
The paper describes the governing non-linear equation for twophase
fluid oscillations with condensation and evaporation, and
presents steady state approximate solutions for free and for pressure
induced oscillations. Resonance criteria and stability are discussed.

9

9289

Visual Study on Flow Patterns and Heat Transfer during Convective Boiling Inside Horizontal Smooth and Microfin Tubes

Evaporator is an important and widely used heat
exchanger in air conditioning and refrigeration industries. Different
methods have been used by investigators to increase the heat transfer
rates in evaporators. One of the passive techniques to enhance heat
transfer coefficient is the application of microfin tubes. The
mechanism of heat transfer augmentation in microfin tubes is
dependent on the flow regime of two-phase flow. Therefore many
investigations of the flow patterns for in-tube evaporation have been
reported in literatures. The gravitational force, surface tension and
the vapor-liquid interfacial shear stress are known as three dominant
factors controlling the vapor and liquid distribution inside the tube. A
review of the existing literature reveals that the previous
investigations were concerned with the two-phase flow pattern for
flow boiling in horizontal tubes [12], [9]. Therefore, the objective of
the present investigation is to obtain information about the two-phase
flow patterns for evaporation of R-134a inside horizontal smooth and
microfin tubes. Also Investigation of heat transfer during flow
boiling of R-134a inside horizontal microfin and smooth tube have
been carried out experimentally The heat transfer coefficients for
annular flow in the smooth tube is shown to agree well with Gungor
and Winterton-s correlation [4]. All the flow patterns occurred in the
test can be divided into three dominant regimes, i.e., stratified-wavy
flow, wavy-annular flow and annular flow. Experimental data are
plotted in two kinds of flow maps, i.e., Weber number for the vapor
versus weber number for the liquid flow map and mass flux versus
vapor quality flow map. The transition from wavy-annular flow to
annular or stratified-wavy flow is identified in the flow maps.

8

6990

The Effect of Mixture Velocity and Droplet Diameter on Oil-water Separator using Computational Fluid Dynamics (CFD)

The characteristics of fluid flow and phase separation
in an oil-water separator were numerically analysed as part of the
work presented herein. Simulations were performed for different
velocities and droplet diameters, and the way this parameters can
influence the separator geometry was studied.
The simulations were carried out using the software package
Fluent 6.2, which is designed for numerical simulation of fluid flow
and mass transfer. The model consisted of a cylindrical horizontal
separator. A tetrahedral mesh was employed in the computational
domain. The condition of two-phase flow was simulated with the
two-fluid model, taking into consideration turbulence effects using
the k-ε model.
The results showed that there is a strong dependency of phase
separation on mixture velocity and droplet diameter. An increase in
mixture velocity will bring about a slow down in phase separation
and as a consequence will require a weir of greater height. An
increase in droplet diameter will produce a better phase separation.
The simulations are in agreement with results reported in literature
and show that CFD can be a useful tool in studying a horizontal oilwater
separator.