International Science Index
31
10007838
Analysis of Simple Mechanisms to Continuously Vary Mach Number in a Supersonic Wind Tunnel Facility
Abstract: Supersonic wind tunnel nozzles are generally capable of producing a constant Mach number flow in the test section of the wind tunnel. As a result, most of the supersonic vehicles are widely designed using steady state flow characteristics which may have errors while facing unsteady situations. This study aims to explore the possibility of varying the Mach number of the flow during wind tunnel operation. The nozzle walls are restricted to be inflexible for cooling near the throat due to high stagnation temperature requirement of the flow to simulate the conditions as experienced by the vehicle. Two simple independent mechanisms, rotation and translation of nozzle walls have been analyzed and the nozzle ranges have been optimized to vary the Mach number from Mach 2 to Mach 5 using minimum number of nozzles in the wind tunnel.
30
10007031
Effect of Atmospheric Pressure on the Flow at the Outlet of a Propellant Nozzle
Abstract: The purpose of this work is to simulate the flow at the exit of Vulcan 1 engine of European launcher Ariane 5. The geometry of the propellant nozzle is already determined using the characteristics method. The pressure in the outlet section of the nozzle is less than atmospheric pressure on the ground, causing the existence of oblique and normal shock waves at the exit. During the rise of the launcher, the atmospheric pressure decreases and the shock wave disappears. The code allows the capture of shock wave at exit of nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer to ensure convergence and avoid the calculation instabilities. The Courant, Friedrichs and Lewy coefficient (CFL) and mesh size level are selected to ensure the numerical convergence. The nonlinear partial derivative equations system which governs this flow is solved by an explicit unsteady numerical scheme by the finite volume method. The accuracy of the solution depends on the size of the mesh and also the step of time used in the discretized equations. We have chosen in this study the mesh that gives us a stationary solution with good accuracy.
29
10007028
Influence of Vegetable Oil-Based Controlled Cutting Fluid Impinging Supply System on Micro Hardness in Machining of Ti-6Al-4V
Abstract: A controlled cutting fluid impinging supply system (CUT-LIST) was developed to deliver an accurate amount of cutting fluid into the machining zone via well-positioned coherent nozzles based on a calculation of the heat generated. The performance of the CUT-LIST was evaluated against a conventional flood cutting fluid supply system during step shoulder milling of Ti-6Al-4V using vegetable oil-based cutting fluid. In this paper, the micro-hardness of the machined surface was used as the main criterion to compare the two systems. CUT-LIST provided significant reductions in cutting fluid consumption (up to 42%). Both systems caused increased micro-hardness value at 100 µm from the machined surface, whereas a slight reduction in micro-hardness of 4.5% was measured when using CUL-LIST. It was noted that the first 50 µm is the soft sub-surface promoted by thermal softening, whereas down to 100 µm is the hard sub-surface caused by the cyclic internal work hardening and then gradually decreased until it reached the base material nominal hardness. It can be concluded that the CUT-LIST has always given lower micro-hardness values near the machined surfaces in all conditions investigated.
28
10006728
Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing
Abstract: Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles.
27
10006609
Experimental Study on Dehumidification Performance of Supersonic Nozzle
Abstract: Supersonic nozzles are commonly used to purify natural gas in gas processing technology. As an innovated technology, it is employed to overcome the deficit of the traditional method, related to gas dynamics, thermodynamics and fluid dynamics theory. An indoor test rig is built to study the dehumidification process of moisture fluid. Humid air was chosen for the study. The working fluid was circulating in an open loop, which had provision for filtering, metering, and humidifying. A stainless steel supersonic separator is constructed together with the C-D nozzle system. The result shows that dehumidification enhances as NPR increases. This is due to the high intensity in the turbulence caused by the shock formation in the divergent section. Such disturbance strengthens the centrifugal force, pushing more particles toward the near-wall region. In return return, the pressure recovery factor, defined as the ratio of the outlet static pressure of the fluid to its inlet value, decreases with NPR.
26
10005931
Energy Efficiency Approach to Reduce Costs of Ownership of Air Jet Weaving
Abstract: Air jet weaving is the most productive, but also the most energy consuming weaving method. Increasing energy costs and environmental impact are constantly a challenge for the manufacturers of weaving machines. Current technological developments concern with low energy costs, low environmental impact, high productivity, and constant product quality. The high degree of energy consumption of the method can be ascribed to the high need of compressed air. An energy efficiency method is applied to the air jet weaving technology. Such method identifies and classifies the main relevant energy consumers and processes from the exergy point of view and it leads to the identification of energy efficiency potentials during the weft insertion process. Starting from the design phase, energy efficiency is considered as the central requirement to be satisfied. The initial phase of the method consists of an analysis of the state of the art of the main weft insertion components in order to point out a prioritization of the high demanding energy components and processes. The identified major components are investigated to reduce the high demand of energy of the weft insertion process. During the interaction of the flow field coming from the relay nozzles within the profiled reed, only a minor part of the stream is really accelerating the weft yarn, hence resulting in large energy inefficiency. Different tools such as FEM analysis, CFD simulation models and experimental analysis are used in order to design a more energy efficient design of the involved components in the filling insertion. A different concept for the metal strip of the profiled reed is developed. The developed metal strip allows a reduction of the machine energy consumption. Based on a parametric and aerodynamic study, the designed reed transmits higher values of the flow power to the filling yarn. The innovative reed fulfills both the requirement of raising energy efficiency and the compliance with the weaving constraints.
25
10006931
The Effect of Pulling and Rotation Speed on the Jet Grout Columns
Abstract: The performance of jet grout columns was affected by many controlled and uncontrolled parameters. The leading parameters for the controlled ones can be listed as injection pressure, rod pulling speed, rod rotation speed, number of nozzles, nozzle diameter and Water/Cement ratio. And the uncontrolled parameters are soil type, soil structure, soil layering condition, underground water level, the changes in strength parameters and the rheologic properties of cement in time. In this study, the performance of jet grout columns and the effects of pulling speed and rotation speed were investigated experimentally. For this purpose, a laboratory type jet grouting system was designed for the experiments. Through this system, jet grout columns were produced in three different conditions. The results of the study showed that the grout pressure and the lifting speed significantly affect the performance of the jet grouting columns.
24
10004683
Internal Power Recovery in Cryogenic Cooling Plants Part I: Expander Development
Abstract: The amount of the electrical power required by refrigeration systems is relevant worldwide. It is evaluated in the order of 15% of the total electricity production taking refrigeration and air-conditioning into consideration. For this reason, in the last years several energy saving techniques have been proposed to reduce the power demand of such plants. The paper deals with the development of an innovative internal recovery system for cryogenic cooling plants. Such a system consists in a Compressor-Expander Group (CEG) designed on the basis of the automotive turbocharging technology. In particular, the paper is focused on the design of the expander, the critical component of the CEG system. Due to the low volumetric flow entering the expander and the high expansion ratio, a commercial turbocharger expander wheel was strongly modified. It was equipped with a transonic nozzle, designed to have a radially inflow full admission. To verify the performance of such a machine and suggest improvements, two different set of nozzles have been designed and modelled by means of the commercial Ansys-CFX software. steady-state 3D CFD simulations of the second-generation prototype are presented and compared with the initial ones.
23
10002057
Influence of Flame-Holder on Existence Important Parameters in a Duct Combustion Simulator
Abstract: The effects of flame-holder position, the ratio of flame
holder diameter to combustion chamber diameter and injection angle
on fuel propulsive droplets sizing and effective mass fraction have
been studied by a cold flow. We named the mass of fuel vapor inside
the flammability limit as the effective mass fraction. An empty
cylinder as well as a flame-holder which are a simulator for duct
combustion has been considered. The airflow comes into the cylinder
from one side and injection operation will be done by four nozzles
which are located on the entrance of cylinder. To fulfill the
calculations a modified version of KIVA-3V code which is a
transient, three-dimensional, multiphase, multi component code for
the analysis of chemically reacting flows with sprays, is used.
22
10002005
Numerical Studies on Thrust Vectoring Using Shock-Induced Self Impinging Secondary Jets
Abstract: Numerical studies have been carried out using a
validated two-dimensional standard k-omega turbulence model for
the design optimization of a thrust vector control system using shock
induced self-impinging supersonic secondary double jet. Parametric
analytical studies have been carried out at different secondary
injection locations to identifying the highest unsymmetrical
distribution of the main gas flow due to shock waves, which produces
a desirable side force more lucratively for vectoring. The results from
the parametric studies of the case on hand reveal that the shock
induced self-impinging supersonic secondary double jet is more
efficient in certain locations at the divergent region of a CD nozzle
than a case with supersonic single jet with same mass flow rate. We
observed that the best axial location of the self-impinging supersonic
secondary double jet nozzle with a given jet interaction angle, built-in
to a CD nozzle having area ratio 1.797, is 0.991 times the primary
nozzle throat diameter from the throat location. We also observed
that the flexible steering is possible after invoking ON/OFF facility to
the secondary nozzles for meeting the onboard mission requirements.
Through our case studies we concluded that the supersonic self-impinging
secondary double jet at predesigned jet interaction angle
and location can provide more flexible steering options facilitating
with 8.81% higher thrust vectoring efficiency than the conventional
supersonic single secondary jet without compromising the payload
capability of any supersonic aerospace vehicle.
21
10000305
The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient
Abstract: Water spray cooling is a technique typically used in
heat treatment and other metallurgical processes where controlled
temperature regimes are required. Water spray cooling is used in
static (without movement) or dynamic (with movement of the steel
plate) regimes. The static regime is notable for the fixed position of
the hot steel plate and fixed spray nozzle. This regime is typical for
quenching systems focused on heat treatment of the steel plate. The
second application of spray cooling is the dynamic regime. The
dynamic regime is notable for its static section cooling system and
moving steel plate. This regime is used in rolling and finishing mills.
The fixed position of cooling sections with nozzles and the
movement of the steel plate produce nonhomogeneous water
distribution on the steel plate. The length of cooling sections and
placement of water nozzles in combination with the nonhomogeneity
of water distribution lead to discontinued or interrupted cooling
conditions. The impact of static and dynamic regimes on cooling
intensity and the heat transfer coefficient during the cooling process
of steel plates is an important issue.
Heat treatment of steel is accompanied by oxide scale growth. The
oxide scale layers can significantly modify the cooling properties and
intensity during the cooling. The combination of static and dynamic
(section) regimes with the variable thickness of the oxide scale layer
on the steel surface impact the final cooling intensity. The study of
the influence of the oxide scale layers with different cooling regimes
was carried out using experimental measurements and numerical
analysis. The experimental measurements compared both types of
cooling regimes and the cooling of scale-free surfaces and oxidized
surfaces. A numerical analysis was prepared to simulate the cooling
process with different conditions of the section and samples with
different oxide scale layers.
20
9999247
3D Numerical Studies on Jets Acoustic Characteristics of Chevron Nozzles for Aerospace Applications
Abstract: The present environmental issues have made aircraft jet noise reduction a crucial problem in aero-acoustics research. Acoustic studies reveal that addition of chevrons to the nozzle reduces the sound pressure level reasonably with acceptable reduction in performance. In this paper comprehensive numerical studies on acoustic characteristics of different types of chevron nozzles have been carried out with non-reacting flows for the shape optimization of chevrons in supersonic nozzles for aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, k-ε turbulence model. In this paper chevron with sharp edge, flat edge, round edge and U-type edge are selected for the jet acoustic characterization of supersonic nozzles. We observed that compared to the base model a case with round-shaped chevron nozzle could reduce 4.13% acoustic level with 0.6% thrust loss. We concluded that the prudent selection of the chevron shape will enable an appreciable reduction of the aircraft jet noise without compromising its overall performance. It is evident from the present numerical simulations that k-ε model can predict reasonably well the acoustic level of chevron supersonic nozzles for its shape optimization.
19
9998108
Conceptual Design of the TransAtlantic as a Research Platform for the Development of “Green” Aircraft Technologies
Abstract: Recent concerns of the growing impact of aviation on
climate change has prompted the emergence of a field referred to as
Sustainable or “Green” Aviation dedicated to mitigating the harmful
impact of aviation related CO2 emissions and noise pollution on
the environment. In the current paper, a unique “green” business
jet aircraft called the TransAtlantic was designed (using analytical
formulation common in conceptual design) in order to show the
feasibility for transatlantic passenger air travel with an aircraft
weighing less than 10,000 pounds takeoff weight. Such an advance in
fuel efficiency will require development and integration of advanced
and emerging aerospace technologies. The TransAtlantic design is
intended to serve as a research platform for the development of
technologies such as active flow control. Recent advances in the field
of active flow control and how this technology can be integrated
on a sub-scale flight demonstrator are discussed in this paper. Flow
control is a technique to modify the behavior of coherent structures
in wall-bounded flows (over aerodynamic surfaces such as wings and
turbine nozzles) resulting in improved aerodynamic cruise and flight
control efficiency. One of the key challenges to application in manned
aircraft is development of a robust high-momentum actuator that
can penetrate the boundary layer flowing over aerodynamic surfaces.
These deficiencies may be overcome in the current development
and testing of a novel electromagnetic synthetic jet actuator which
replaces piezoelectric materials as the driving diaphragm. One of
the overarching goals of the TranAtlantic research platform include
fostering national and international collaboration to demonstrate (in
numerical and experimental models) reduced CO2/ noise pollution
via development and integration of technologies and methodologies
in design optimization, fluid dynamics, structures/ composites,
propulsion, and controls.
18
9999108
Effect of Highly Pressurized Dispersion Arc Nozzle on Breakup of Oil Leakage in Offshore
Abstract: The most important problem occurs on oil spills in sea
water is to reduce the oil spills size. This study deals with the
development of high pressurized nozzle using dispersion method for
oil leakage in offshore. 3D numerical simulation results were
obtained using ANSYS Fluent 13.0 code and correlate with the
experimental data for validation. This paper studies the contribution
of the process on flow speed and pressure of the flow from two
different geometrical designs of nozzles and to generate a spray
pattern suitable for dispersant application. Factor of size distribution
of droplets generated by the nozzle is calculated using pressures
ranging from 2 to 6 bars. Results obtain from both analyses shows a
significant spray pattern and flow distribution as well as distance.
Results also show a significant contribution on the effect of oil
leakage in terms of the diameter of the oil spills break up.
17
9997005
Effect of Jet Diameter on Surface Quenching at Different Spatial Locations
Abstract: An experimental investigation has been carried out to study the cooling of a hot horizontal Stainless Steel surface of 3 mm thickness, which has 800±10 C initial temperature. A round water jet of 22 ± 1 oC temperature was injected over the hot surface through straight tube type nozzles of 2.5- 4.8 mm diameter and 250 mm length. The experiments were performed for the jet exit to target surface spacing of 4 times of jet diameter and jet Reynolds number of 5000 -24000. The effect of change in jet Reynolds number on the surface quenching has been investigated form the stagnation point to 16 mm spatial location.
16
16685
Performance Investigation of Solid-Rocket Motor with Nozzle Throat Erosion
Abstract: In order to determine the performance and key design parameters of rocket, the erosion of nozzle throat during solid rocket motor burning have to be calculated. This study aims to predict the nozzle throat erosion in solid rocket motors according to the thrust profile of motor in operating conditions and develop a model for optimum performance of rocket. We investigate the throat radius change in the static test programs. The standard method and thrust coefficient are used for adjusting into the ideal performance for conical nozzles. Pressure and thrust data acquired from the tests are analyzed to determine the instantaneous nozzle throat diameter variation throughout the test duration. The result shows good agreement of calculated correlation comparing with measured erosion rate data showing agreement within 1.6 mm/s. Nozzle thrust coefficient loss is found approximately 24% form nozzle throat erosion during burning.
15
3767
Numerical Investigation of Nozzle Shape Effect on Shock Wave in Natural Gas Processing
Abstract: Natural gas flow contains undesirable solid particles,
liquid condensation, and/or oil droplets and requires reliable
removing equipment to perform filtration. Recent natural gas
processing applications are demanded compactness and reliability of
process equipment. Since conventional means are sophisticated in
design, poor in efficiency, and continue lacking robust, a supersonic
nozzle has been introduced as an alternative means to meet such
demands.
A 3-D Convergent-Divergent Nozzle is simulated using
commercial Code for pressure ratio (NPR) varies from 1.2 to 2. Six
different shapes of nozzle are numerically examined to illustrate the
position of shock-wave as such spot could be considered as a
benchmark of particle separation. Rectangle, triangle, circular,
elliptical, pentagon, and hexagon nozzles are simulated using Fluent
Code with all have same cross-sectional area.
The simple one-dimensional inviscid theory does not describe the
actual features of fluid flow precisely as it ignores the impact of
nozzle configuration on the flow properties. CFD Simulation results,
however, show that nozzle geometry influences the flow structures
including location of shock wave.
The CFD analysis predicts shock appearance when p01/pa>1.2 for
almost all geometry and locates at the lower area ratio (Ae/At).
Simulation results showed that shock wave in Elliptical nozzle has
the farthest distance from the throat among the others at relatively
small NPR. As NPR increases, hexagon would be the farthest. The
numerical result is compared with available experimental data and
has shown good agreement in terms of shock location and flow
structure.
14
5500
Design of the Propelling Nozzles for the Launchers and Satellites
Abstract: The aim of this work is to determine the supersonic
nozzle profiles used in propulsion, for the launchers or embarked
with the satellites. This design has as a role firstly, to give a
important propulsion, i.e. with uniform and parallel flow at exit,
secondly to find a short length profiles without modification of the
flow in the nozzle. The first elaborate program is used to determine
the profile of divergent by using the characteristics method for an
axisymmetric flow. The second program is conceived by using the
finite volume method to determine and test the profile found
connected to a convergent.
13
9996959
Application of De-Laval Nozzle Transonic Flow Field Computation Approaches
Abstract: A supersonic expansion cannot be achieved within a convergent-divergent nozzle if the flow velocity does not reach that of the sound at the throat. The computation of the flow field characteristics at the throat is thus essential to the nozzle developed thrust value and therefore to the aircraft or rocket it propels. Several approaches were developed in order to describe the transonic expansion, which takes place through the throat of a De-Laval convergent-divergent nozzle. They all allow reaching good results but showing a major shortcoming represented by their inability to describe the transonic flow field for nozzles having a small throat radius. The approach initially developed by Kliegel & Levine uses the velocity series development in terms of the normalized throat radius added to unity instead of solely the normalized throat radius or the traditional small disturbances theory approach. The present investigation carries out the application of these three approaches for different throat radiuses of curvature. The method using the normalized throat radius added to unity shows better results when applied to geometries integrating small throat radiuses.
12
6224
Study of the Effect of Over-expansion Factor on the Flow Transition in Dual Bell Nozzles
Abstract: Dual bell nozzle is a promising one among the altitude
adaptation nozzle concepts, which offer increased nozzle
performance in rocket engines. Its advantage is the simplicity it offers
due to the absence of any additional mechanical device or movable
parts. Hence it offers reliability along with improved nozzle
performance as demanded by future launch vehicles. Among other
issues, the flow transition to the extension nozzle of a dual bell
nozzle is one of the major issues being studied in the development of
dual bell nozzle. A parameter named over-expansion factor, which
controls the value of the wall inflection angle, has been reported to
have substantial influence in this transition process. This paper
studies, through CFD and cold flow experiments, the effect of overexpansion
factor on flow transition in dual bell nozzles.
11
1179
Hydrodynamic Processes in Bubbly Liquid Flow in Tubes and Nozzles
Abstract: The hydrodynamic processes in bubbly liquid flowing
in tubes and nozzles are studied theoretically and numerically. The
principal regularities of non-stationary processes of boiling liquid
outflow are established under conditions of experiments when the
depressurization of a tube with high pressure inside occurs. The
steady-state solution of bubbly liquid flow in the nozzle of round
cross section with high pressure and temperature conditions inside
bubbles is studied accounting for phase transition and chemical
reactions.
10
10562
Experimental Investigation of the Transient Cooling Characteristics of an Industrial Glass Tempering Unit
Abstract: Energy consumption rate during the cooling process
of industrial glass tempering process is considerably high. In this
experimental study the effect of dimensionless jet to jet distance
(S/D) and jet to plate distance (H/D) on the cooling time have been
investigated. In the experiments 4 mm thick glass samples have been
used. Cooling unit consists of 16 mutually placed seamless aluminum
nozzles of 8 mm in diameter and 80 mm in length. Nozzles were in
staggered arrangement. Experiments were conducted with circular
jets for H/D values between 1 and 10, and for S/D values between 2
and 10. During the experiments Reynolds number has been kept
constant at 30000. Experimental results showed that the longest
cooling time with 87 seconds has been observed in the experiments
for S/D=10 and H/D=10 values, while the shortest cooling time with
42.5 seconds has been measured in the experiments for S/D=2 and
H/D=4 values.
9
3195
Effect of Various Nozzle Profiles on Performance of a Two Phase Flow Jet Pump
Abstract: This paper reports on the results of experimental investigations on the performance of a jet pump operated under selected primary flows to optimize the related parameters. For this purpose a two-phase flow jet pump was used employing various profiles of nozzles as the primary device which was designed, fabricated and used along with the combination of mixing tube and diffuser. The profiles employed were circular, conical, and elliptical. The diameter of the nozzle used was 4 mm. The area ratio of the jet pump was 0.16. The test facility created for this purpose was an open loop continuous circulation system. Performance of the jet pump was obtained as iso-efficiency curves on characteristic curves drawn for various water flow rates. To perform the suction capability, evacuation test was conducted at best efficiency point for all the profiles.
8
2793
An Investigation on the Effects of Injection Spray Cone on Propulsive Droplets in a Duct
Abstract: This paper addresses one important aspect of
combustion system analysis, the spray evaporation and
dispersion modeling. In this study we assume an empty
cylinder which is as a simulator for a ramjet engine and the
cylinder has been studied by cold flow. Four nozzles have the
duties of injection which are located in the entrance of
cylinder. The air flow comes into the cylinder from one side
and injection operation will be done. By changing injection
velocity and entrance air flow velocity, we have studied
droplet sizing and efficient mass fraction of fuel vapor near
and at the exit area. We named the mass of fuel vapor inside
the flammability limit as the efficient mass fraction. Further,
we decreased the initial temperature of fuel droplets and we
have repeated the investigating again. To fulfill the calculation
we used a modified version of KIVA-3V.
7
11849
The Comparative Analysis of Two Typical Fluidic Thrust Vectoring Exhaust Nozzles on Aerodynamic Characteristics
Abstract: The comparisons of two typical fluidic thrust vectoring exhaust nozzles including two-dimensional(2-D) nozzle and axisymmetric nozzle on aerodynamic characteristics was presented by numerical simulation. The results show: the thrust vector angles increased with the increasing secondary flow but decreased with the nozzle pressure ratio (NPR) increasing. With the same secondary flow and NPR, the thrust vector angles of 2-D nozzle were higher than the axisymmetric nozzle-s. So with the lower NPR and more secondary weight flow, the much higher thrust vector angle was caused by 2-D fluidic nozzle. And with the higher NPR and less secondary weight flow, there was not much difference in angular dimension between two nozzles.
6
7286
Effects of Injection Velocity and Entrance Airflow Velocity on Droplets Sizing in a Duct
Abstract: This paper addresses one important aspect of
combustion system analysis, the spray evaporation and
dispersion modeling. In this study we assume an empty
cylinder which is as a simulator for a ramjet engine and the
cylinder has been studied by cold flow. Four nozzles have the
duties of injection which are located in the entrance of
cylinder. The air flow comes into the cylinder from one side
and injection operation will be done. By changing injection
velocity and entrance air flow velocity, we have studied
droplet sizing and efficient mass fraction of fuel vapor near
and at the exit area. We named the mass of fuel vapor inside
the flammability limit as the efficient mass fraction. Further,
we decreased the initial temperature of fuel droplets and we
have repeated the investigating again. To fulfill the calculation
we used a modified version of KIVA-3V.
5
9457
Influence of Thermo-fluid-dynamic Parameters on Fluidics in an Expanding Thermal Plasma Deposition Chamber
Abstract: Technology of thin film deposition is of interest in
many engineering fields, from electronic manufacturing to corrosion
protective coating. A typical deposition process, like that developed
at the University of Eindhoven, considers the deposition of a thin,
amorphous film of C:H or of Si:H on the substrate, using the
Expanding Thermal arc Plasma technique. In this paper a computing
procedure is proposed to simulate the flow field in a deposition
chamber similar to that at the University of Eindhoven and a
sensitivity analysis is carried out in terms of: precursor mass flow
rate, electrical power, supplied to the torch and fluid-dynamic
characteristics of the plasma jet, using different nozzles. To this
purpose a deposition chamber similar in shape, dimensions and
operating parameters to the above mentioned chamber is considered.
Furthermore, a method is proposed for a very preliminary evaluation
of the film thickness distribution on the substrate. The computing
procedure relies on two codes working in tandem; the output from
the first code is the input to the second one. The first code simulates
the flow field in the torch, where Argon is ionized according to the
Saha-s equation, and in the nozzle. The second code simulates the
flow field in the chamber. Due to high rarefaction level, this is a
(commercial) Direct Simulation Monte Carlo code. Gas is a mixture
of 21 chemical species and 24 chemical reactions from Argon plasma
and Acetylene are implemented in both codes. The effects of the
above mentioned operating parameters are evaluated and discussed
by 2-D maps and profiles of some important thermo-fluid-dynamic
parameters, as per Mach number, velocity and temperature. Intensity,
position and extension of the shock wave are evaluated and the
influence of the above mentioned test conditions on the film
thickness and uniformity of distribution are also evaluated.
4
6595
Improving Power Plant Efficiency using Water Droplet Injection in Air Condensers
Abstract: Observations show that power plant efficiency
decreases in hot summer days. Water droplet injection in air
condensers is suggested in order to decrease the inlet air temperature.
Nozzle arrangement, injected water flow rate and droplets diameter
effects on evaporation rate and the resulting air temperature are
investigated using numerical simulation. Decreasing the diameter of
injected droplets and increasing the number of injecting nozzles,
decreases the outlet air temperature. Also a more uniform air
temperature can be obtained using more injecting nozzles. Numerical
results are in good agreement with analytical results.
3
11741
The Self-Propelled Model of a Boat, Based on the Wave Thrust
Abstract: We attempted investigate a boat model, based on the
conversion of energy of surface wave into a sequence of
unidirectional pulses of jet spurts, in other words - model of the boat,
which is thrusting by the waves field on water surface. These pulses
are forming some average reactive stream from the output nozzle on
the stern of boat. The suggested model provides the conversion of its
oscillatory motions (both pitching and rolling) into a jet flow. This
becomes possible due to special construction of the boat and due to
several details, sensitive to the local wave field. The boat model
presents the uniflow jet engine without slow conversions of
mechanical energy into intermediate forms and without any external
sources of energy (besides surface waves). Motion of boat is
characterized by fast jerks and average onward velocity, which
exceeds the velocities of liquid particles in the wave.
2
12007
Numerical Investigation of the Chilling of Food Products by Air-Mist Spray
Abstract: Spray chilling using air-mist nozzles has received
much attention in the food processing industry because of the
benefits it has shown over forced air convection. These benefits
include an increase in the heat transfer coefficient and a reduction in
the water loss by the product during cooling. However, few studies
have simulated the heat transfer and aerodynamics phenomena of the
air-mist chilling process for optimal operating conditions. The study
provides insight into the optimal conditions for spray impaction, heat
transfer efficiency and control of surface flooding. A computational
fluid dynamics model using a two-phase flow composed of water
droplets injected with air is developed to simulate the air-mist
chilling of food products. The model takes into consideration
droplet-to-surface interaction, water-film accumulation and surface
runoff. The results of this study lead to a better understanding of the
heat transfer enhancement, water conservation, and to a clear
direction for the optimal design of air-mist chilling systems that can
be used in commercial applications in the food and meat processing
industries.