3

10005484

A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines

This paper presents a nonlinear differential model,
for a three-bladed horizontal axis wind turbine (HAWT) suited
for control applications. It is based on a 8-dofs, lumped
parameters structural dynamics coupled with a quasi-steady sectional
aerodynamics. In particular, using the Euler-Lagrange Equation
(Energetic Variation approach), the authors derive, and successively
validate, such model. For the derivation of the aerodynamic model,
the Greenbergs theory, an extension of the theory proposed by
Theodorsen to the case of thin airfoils undergoing pulsating flows,
is used. Specifically, in this work, the authors restricted that theory
under the hypothesis of low perturbation reduced frequency k,
which causes the lift deficiency function C(k) to be real and equal
to 1. Furthermore, the expressions of the aerodynamic loads are
obtained using the quasi-steady strip theory (Hodges and Ormiston),
as a function of the chordwise and normal components of relative
velocity between flow and airfoil Ut, Up, their derivatives, and
section angular velocity ε˙. For the validation of the proposed model,
the authors carried out open and closed-loop simulations of a 5
MW HAWT, characterized by radius R =61.5 m and by mean chord
c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec.
The first analysis performed is the steady state solution, where
a uniform wind Vw = 11.4 m/s is considered and a collective
pitch angle θ = 0.88◦ is imposed. During this step, the authors
noticed that the proposed model is intrinsically periodic due to
the effect of the wind and of the gravitational force. In order
to reject this periodic trend in the model dynamics, the authors
propose a collective repetitive control algorithm coupled with a PD
controller. In particular, when the reference command to be tracked
and/or the disturbance to be rejected are periodic signals with a
fixed period, the repetitive control strategies can be applied due to
their high precision, simple implementation and little performance
dependency on system parameters. The functional scheme of a
repetitive controller is quite simple and, given a periodic reference
command, is composed of a control block Crc(s) usually added
to an existing feedback control system. The control block contains
and a free time-delay system eτs in a positive feedback loop, and a
low-pass filter q(s). It should be noticed that, while the time delay
term reduces the stability margin, on the other hand the low pass
filter is added to ensure stability. It is worth noting that, in this
work, the authors propose a phase shifting for the controller and
the delay system has been modified as e^(−(T−γk)), where T is the
period of the signal and γk is a phase shifting of k samples of the
same periodic signal. It should be noticed that, the phase shifting
technique is particularly useful in non-minimum phase systems, such
as flexible structures. In fact, using the phase shifting, the iterative
algorithm could reach the convergence also at high frequencies.
Notice that, in our case study, the shifting of k samples depends
both on the rotor angular velocity Ω and on the rotor azimuth
angle Ψ: we refer to this controller as a spatial repetitive controller.
The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades.
The performance of the spatial repetitive controller is compared
with an industrial PI controller. In particular, starting from wind
speed velocity Vw = 11.4 m/s the controller is asked to maintain the
nominal angular velocity Ωn = 1.266rad/s after an instantaneous
increase of wind speed (Vw = 15 m/s). Then, a purely periodic
external disturbance is introduced in order to stress the capabilities
of the repetitive controller. The results of the simulations show that,
contrary to a simple PI controller, the spatial repetitive-PD controller
has the capability to reject both external disturbances and periodic
trend in the model dynamics. Finally, the nominal value of the
angular velocity is reached, in accordance with results obtained with
commercial software for a turbine of the same type.

2

10002489

Half Model Testing for Canard of a Hybrid Buoyant Aircraft

Due to the interference effects, the intrinsic
aerodynamic parameters obtained from the individual component
testing are always fundamentally different than those obtained for
complete model testing. Consideration and limitation for such testing
need to be taken into account in any design work related to the
component buildup method. In this paper, the scaled model of a
straight rectangular canard of a hybrid buoyant aircraft is tested at 50
m/s in IIUM-LSWT (Low Speed Wind Tunnel). Model and its
attachment with the balance are kept rigid to have results free from
the aeroelastic distortion. Based on the velocity profile of the test
section’s floor; the height of the model is kept equal to the
corresponding boundary layer displacement. Balance measurements
provide valuable but limited information of overall aerodynamic
behavior of the model. Zero lift coefficient is obtained at -2.2o and
the corresponding drag coefficient was found to be less than that at
zero angle of attack. As a part of the validation of low fidelity tool,
plot of lift coefficient plot was verified by the experimental data and
except the value of zero lift coefficients, the overall trend has under
predicted the lift coefficient. Based on this comparative study, a
correction factor of 1.36 is proposed for lift curve slope obtained
from the panel method.

1

9998108

Conceptual Design of the TransAtlantic as a Research Platform for the Development of “Green” Aircraft Technologies

Recent concerns of the growing impact of aviation on climate change has prompted the emergence of a field referred to as Sustainable or “Green” Aviation dedicated to mitigating the harmful impact of aviation related CO2 emissions and noise pollution on the environment. In the current paper, a unique “green” business jet aircraft called the TransAtlantic was designed (using analytical formulation common in conceptual design) in order to show the feasibility for transatlantic passenger air travel with an aircraft weighing less than 10,000 pounds takeoff weight. Such an advance in fuel efficiency will require development and integration of advanced and emerging aerospace technologies. The TransAtlantic design is intended to serve as a research platform for the development of technologies such as active flow control. Recent advances in the field of active flow control and how this technology can be integrated on a sub-scale flight demonstrator are discussed in this paper. Flow control is a technique to modify the behavior of coherent structures in wall-bounded flows (over aerodynamic surfaces such as wings and turbine nozzles) resulting in improved aerodynamic cruise and flight control efficiency. One of the key challenges to application in manned aircraft is development of a robust high-momentum actuator that can penetrate the boundary layer flowing over aerodynamic surfaces. These deficiencies may be overcome in the current development and testing of a novel electromagnetic synthetic jet actuator which replaces piezoelectric materials as the driving diaphragm. One of the overarching goals of the TranAtlantic research platform include fostering national and international collaboration to demonstrate (in numerical and experimental models) reduced CO2/ noise pollution via development and integration of technologies and methodologies in design optimization, fluid dynamics, structures/ composites, propulsion, and controls.