International Science Index

International Journal of Aerospace and Mechanical Engineering

Aeroelastic Stability Analysis in Turbomachinery Using Reduced Order Aeroelastic Model Tool
In the present day fan blade of aero engine, turboprop propellers, gas turbine or steam turbine low-pressure blades are getting bigger, lighter and thus, become more flexible. Therefore, flutter, forced blade response and vibration related failure of the high aspect ratio blade are of main concern for the designers, thus need to be address properly in order to achieve successful component design. At the preliminary design stage large number of design iteration is need to achieve the utter free safe design. Most of the numerical method used for aeroelastic analysis is based on field-based methods such as finite difference method, finite element method, finite volume method or coupled. These numerical schemes are used to solve the coupled fluid Flow-Structural equation based on full Naiver-Stokes (NS) along with structural mechanics’ equations. These type of schemes provides very accurate results if modeled properly, however, they are computationally very expensive and need large computing recourse along with good personal expertise. Therefore, it is not the first choice for aeroelastic analysis during preliminary design phase. A reduced order aeroelastic model (ROAM) with acceptable accuracy and fast execution is more demanded at this stage. Similar ROAM are being used by other researchers for aeroelastic and force response analysis of turbomachinery. In the present paper new medium fidelity ROAM is successfully developed and implemented in numerical tool to simulated the aeroelastic stability phenomena in turbomachinery and well as flexible wings. In the present, a hybrid flow solver based on 3D viscous-inviscid coupled 3D panel method (PM) and 3d discrete vortex particle method (DVM) is developed, viscous parameters are estimated using boundary layer(BL) approach. This method can simulate flow separation and is a good compromise between accuracy and speed compared to CFD. In the second phase of the research work, the flow solver (PM) will be coupled with ROM non-linear beam element method (BEM) based FEM structural solver (with multibody capabilities) to perform the complete aeroelastic simulation of a steam turbine bladed disk, propellers, fan blades, aircraft wing etc. The partitioned based coupling approach is used for fluid-structure interaction (FSI). The numerical results are compared with experimental data for different test cases and for the blade cascade test case, experimental data is obtained from in-house lab experiments at IT CAS. Furthermore, the results from the new aeroelastic model will be compared with classical CFD-CSD based aeroelastic models. The proposed methodology for the aeroelastic stability analysis of gas turbine or steam turbine blades, or propellers or fan blades will provide researchers and engineers a fast, cost-effective and efficient tool for aeroelastic (classical flutter) analysis for different design at preliminary design stage where large numbers of design iteration are required in short time frame.
Influence of Microparticles in the Contact Region of Quartz Sand Grains: A Micro-Mechanical Experimental Study
The mechanical behavior of geological materials is very complex, and this complexity is related to the discrete nature of soils and rocks. Characteristics of a material at the grain scale such as particle size and shape, surface roughness and morphology, and particle contact interface are critical to evaluate and better understand the behavior of discrete materials. This study investigates experimentally the micro-mechanical behavior of quartz sand grains with emphasis on the influence of the presence of microparticles in their contact region. The outputs of the study provide some fundamental insights on the contact mechanics behavior of artificially coated grains and can provide useful input parameters in the discrete element modeling (DEM) of soils. In nature, the contact interfaces between real soil grains are commonly observed with microparticles. This is usually the case of sand-silt and sand-clay mixtures, where the finer particles may create a coating on the surface of the coarser grains, altering in this way the micro-, and thus the macro-scale response of geological materials. In this study, the micro-mechanical behavior of Leighton Buzzard Sand (LBS) quartz grains, with interference of different microparticles at their contact interfaces is studied in the laboratory using an advanced custom-built inter-particle loading apparatus. Special techniques were adopted to develop the coating on the surfaces of the quartz sand grains so that to establish repeatability of the coating technique. The characterization of the microstructure of coated particles on their surfaces was based on element composition analyses, microscopic images, surface roughness measurements, and single particle crushing strength tests. The mechanical responses such as normal and tangential load – displacement behavior, tangential stiffness behavior, and normal contact behavior under cyclic loading were studied. The behavior of coated LBS particles is compared among different classes of them and with pure LBS (i.e. surface cleaned to remove any microparticles). The damage on the surface of the particles was analyzed using microscopic images. Extended displacements in both normal and tangential directions were observed for coated LBS particles due to the plastic nature of the coating material and this varied with the variation of the amount of coating. The tangential displacement required to reach steady state was delayed due to the presence of microparticles in the contact region of grains under shearing. Increased tangential loads and coefficient of friction were observed for the coated grains in comparison to the uncoated quartz grains.
Numerical Simulation of Non-Steady Heat Transfer at a Supersonic Nozzle
The heat transfer of the hot combustion gases towards the supersonic nozzle walls is a very critical part of the rocket engine design process. Since the gases usually reach temperatures much higher than the melting points of most combustion chamber and nozzle wall materials, it is a requirement either to cool the thrust chamber walls or to stop the rocket engine operation before critical temperature is achieved at some regions. Basically, there are two fundamental types of heat transfer designs for the supersonic nozzle. The first one is the steady state focus, where cooling systems are implemented making the heat transfer rate and the wall temperatures to reach thermal equilibrium. The second is non-steady heat transfer, which is also called heat sink cooling. In this case, the thrust chamber temperature continues increasing during the rocket engine operation and the maximum operation time is limited by the heat absorbing capacity of the materials and the nozzle structural integrity under extreme temperatures. The present work consists of two simulations. First, an experiment of supersonic heat transfer carried out at the Jet Propulsion Laboratory in Pasadena is reproduced numerically with ANSYS Fluent in order to determine a suitable numerical model (meshes for fluid and solid domains, turbulence model, solver) for resolving the heat transfer between the supersonic flow and the nozzle wall. This simulation was in steady state since the nozzle was refrigerated by water during the experiment. Different meshes, solvers and RANS turbulence models were implemented in order to determine those which gave the best agreement between numerical and experimental results, as well as mesh independence and acceptable levels of convergence. With the fluid and solid code configurations validated from the previous runs, the model is used to simulate the heat transfer from hot combustion gases towards to the wall of the supersonic nozzle of a rocket engine in development. A non-steady analysis is required, because at this early stage of the project, the nozzle does not rely on a cooling system. Therefore, it is critical to predict precisely how the nozzle’s wall temperature evolves during its operating period.
Experimental Simulation of Gust Effects on an Airfoil through a Sudden Change in Pitch Angle
Since the early flights, several investigations have been carried out to determine the gust effect in the aerodynamics of aircraft, wind turbines, and UAVs, and to formalize a theory for the design of them. A different approach in its study is the object of this work: a sudden change in the pitch angle of a model of a wing in a wind tunnel simulates the aerodynamic effects of a vertical gust. The experiments were performed with different turbulence intensities and at different low Reynolds numbers. A wing model of Wortmann FX 63-137 airfoil was constructed with a chord length (c) of 0.25 m and a span (b) of 0.75 m. It was tested at different turbulence intensities in order to evaluate its influence. The tests were performed for Reynolds numbers based on the airfoil chord from 50000 to 200000. The resultant flow pattern structure and leading-edge vortex are observed with smoke and measured with a hot-wire anemometer in the wake. Also, accelerometers were mounted on the upper surface of the model to characterize its motion. The sudden change of pitch angle is driven at different speeds by means of an electro-pneumatic actuator. Different pitching velocities have been tested for the recognition of gust effects. Previous tests have been accomplished, which reveal the influence of pitching speed at one turbulence level. Further testing is envisaged to formalize a theory able to predict such results and to study the dependence of the edge vortex generation mechanism on the turbulence intensity and spatial integral scales of the incident flow.
A Fuzzy TOPSIS Based Model for Safety Risk Assessment of Operational Flight Data
Flight Data Monitoring (FDM) program assist an operator in aviation industries to identify, quantify, assess and address operational safety risks, in order to improve safety of flight operations. FDM as a powerful tool for an aircraft operator integrated into the operator’s Safety Management System (SMS), allowing to detect, confirm and assess safety issues and to check the effectiveness of corrective actions, associated with human errors. This article proposes a model for safety risk assessment level of flight data in a different aspect of event focus based on fuzzy set values. It permits to evaluate the operational safety level from the point of view of flight activities. The main advantages of this method are proposed qualitative safety analysis of flight data. This research applies the opinions of the aviation experts through a number of questionnaires Related to flight data in 4 categories of occurrence that can take place during an accident or an incident such as: Runway Excursions (RE), Controlled Flight Into Terrain (CFIT), Mid-Air Collision (MAC), Loss of Control in Flight (LOC-I). By weighting each one (by F-TOPSIS) and applying it to the number of risks of the event, the safety risk of each related events can be obtained.
Adhesive Bonded Joints Characterization and Crack Propagation in Composite Materials under Cyclic Impact Fatigue and Constant Amplitude Fatigue Loadings
The Colombian aeronautical industry has stimulated research in the mechanical behavior of materials under different loading conditions aircrafts are generally exposed during its operation. The Calima T-90 is the first military aircraft built in the country, used for primary flight training of Colombian Air Force Pilots, therefore, it may be exposed to adverse operating situations such as hard landings which cause impact loads on the aircraft that might produce the impact fatigue phenomenon. The Calima T-90 structure is mainly manufactured by composites materials generating assemblies and subassemblies of different components of it. The main method of bonding these components is by using adhesive joints. Each type of adhesive bond must be studied on its own since its performance depends on the conditions of the manufacturing process and operating characteristics. This study aims to characterize the typical adhesive joints of the aircraft under usual loads. To this purpose, the evaluation of the effect of adhesive thickness on the mechanical performance of the joint under quasi-static loading conditions, constant amplitude fatigue and cyclic impact fatigue using single lap-joint specimens will be performed. Additionally, using a double cantilever beam specimen, the influence of the thickness of the adhesive on the crack growth rate for mode I delamination failure, as a function of the critical energy release rate will be determined. Finally, an analysis of the fracture surface of the test specimens considering the mechanical interaction between the substrate (composite) and the adhesive, provide insights into the magnitude of the damage, the type of failure mechanism that occurs and its correlation with the way crack propagates under the proposed loading conditions.
Control for Fluid Flow Behaviours of Viscous Fluids and Heat Transfer in Mini-Channel: A Case Study Using Numerical Simulation Method
The control for fluid flow behaviours of viscous fluids and heat transfer occurrences within heated mini-channel is considered. Heat transfer and flow characteristics of different viscous liquids, such as engine oil, automatic transmission fluid, one-half ethylene glycol, and deionized water were numerically analyzed. Some mathematical applications such as Fourier series and Laplace Z-Transforms were employed to ascertain the behaviour-wave like structure of these each viscous fluids. The steady, laminar flow and heat transfer equations are reckoned by the aid of numerical simulation technique. Further, this numerical simulation technique is endorsed by using the accessible practical values in comparison with the anticipated local thermal resistances. However, the roughness of this mini-channel that is one of the physical limitations was also predicted in this study. This affects the frictional factor. When an additive such as tetracycline was introduced in the fluid, the heat input was lowered, and this caused pro rata effect on the minor and major frictional losses, mostly at a very minute Reynolds number circa 60-80. At this ascertained lower value of Reynolds numbers, there exists decrease in the viscosity and minute frictional losses as a result of the temperature of these viscous liquids been increased. It is inferred that the three equations and models are identified which supported the numerical simulation via interpolation and integration of the variables extended to the walls of the mini-channel, yields the utmost reliance for engineering and technology calculations for turbulence impacting jets in the near imminent age. Out of reasoning with a true equation that could support this control for the fluid flow, Navier-stokes equations were found to tangential to this finding. Though, other physical factors with respect to these Navier-stokes equations are required to be checkmated to avoid uncertain turbulence of the fluid flow. This paradox is resolved within the framework of continuum mechanics using the classical slip condition and an iteration scheme via numerical simulation method that takes into account certain terms in the full Navier-Stokes equations. However, this resulted in dropping out in the approximation of certain assumptions. Concrete questions raised in the main body of the work are sightseen further in the appendices.
Aerodynamic Heating Analysis of Hypersonic Flow over Blunt-Nosed Bodies Using Computational Fluid Dynamics
The qualitative aspects of hypersonic flow over a range of blunt bodies have been extensively analyzed in the past. It is well known that the curvature of a body’s geometry in the sonic region predominantly dictates the bow shock shape and its standoff distance from the body, while the surface pressure distribution depends on both the sonic region and on the local body shape. The present study is an extension to analyze the hypersonic flow characteristics over several blunt-nosed bodies using modern Computational Fluid Dynamics (CFD) tools to determine the shock shape and its effect on the heat flux around the body. 4 blunt-nosed models with cylindrical afterbodies were analyzed for a flow at a Mach number of 10 corresponding to the standard atmospheric conditions at an altitude of 50 km. The nose radii of curvature of the models range from a hemispherical nose to a flat nose. Appropriate numerical models and the supplementary convergence techniques that were implemented for the CFD analysis are thoroughly described. The flow contours are presented highlighting the key characteristics of shock wave shape, shock standoff distance and the sonic point shift on the shock. The variation of heat flux, due to different shock detachments for various models is comprehensively discussed. It is observed that the more the bluntness of the nose radii, the farther the shock stands from the body; and consequently, the less the surface heating at the nose. The results obtained from the CFD analyses are compared with approximated theoretical engineering correlations. Overall, a satisfactory agreement is observed between the two.
Post Coronary Artery Stenting Reflighting: Need for Change in Policy with Changing Antiplatelet Therapy
Background: Coronary artery Disease (CAD) is a common cause of morbidity, mortality and reason for unfitness amongst aircrew. Coronary angioplasty and stenting are the standard of care for CAD. Antiplatelet drugs like Aspirin and Clopidogrel(Dual Antiplatelet therapy) are routinely prescribed post-stenting which are permitted for flying. However, in the recent past, Ticagrelor is being used in place of Clopidogrel as per ACC AHA and ESC guidelines. However Ticagrelor is not permitted for flying. Case Presentation: A 55-year-old pilot suffered Anterior Wall Myocardial Infarction. Angiography showed blockages in Left Anterior Descending Artery(LAD) and Right coronary artery (RCA). He underwent primary angioplasty and stenting LAD and subsequent stenting to RCA. Recovery was uneventful. One year later he was asymptomatic with normal Left ventricular function and no reversible perfusion defect on stress MPI. He had patent stents and coronaries on check angiogram. However, he was not allowed to fly since he was on Ticagrelor. He had to be switched over to Clopidogrel from Ticagrelor one year after stenting to permit him for flying. Similarly, switching had to be done in a 45-year-old pilot. Ticagrelor has been proven to be more effective than clopidogrel and as safe as Clopidogrel in preventing stent thrombosis. If Clopidogrel is being permitted, there is no need to restrict Ticagrelor. Hence "Policy" needs to be changed. Conclusions: Dual Antiplatelet therapy is the standard of care post coronary stenting which has been proved safe and effective. Policy needs to be changed to permit flying with Ticagrelor which is more effective than Clopidogrel and equally safe.
Organic Circularly Polarized Luminescence Materials Based on Planar Chirality
[2.2]Paracyclophane compounds, in which two benzene rings are closely stacked, have been extensively studied. We have been interested in their unique planar chirality, a feature that is derived from the suppressed rotary motion of the two fixed benzene rings. This planar chirality can be observed in [2.2]paracyclophanes with one or more substituents depending on the substituted position. Recently, we developed optical resolution methods of 4,12-disubstituted and 4,7,12,15-tetrasubstituted [2.2]paracyclophane derivatives. In addition, we prepared chiral conjugated compounds, oligomers, polymers, and dendrimers with optically active second-ordered structures, such as V-, N-, M-, X-, propeller-shaped, and double helical structure. It was also reported that the obtained conjugated compounds exhibited excellent chiroptical properties including circularly polarized luminescence (CPL) with large CPL dissymmetry factors (glum). To the best of the author’s knowledge, they are first examples that planar chiral molecules emit CPL. In this paper, optical resolutions of planar chiral di- and tetrasubstituted [2.2]paracyclophanes will be briefly reported. Synthesis of the optically active macromolecules with chiral second-ordered structures based on the obtained enantiopure [2.2]paracyclophanes and their chiroptical properties such as CPL profiles will be discussed.
Robustness of the Deep Chroma Extractor and Locally-Normalized Quarter Tone Filters in Automatic Chord Estimation under Reverberant Conditions
In MIREX 2016 (, the deep neural network (DNN)-Deep Chroma Extractor, proposed by Korzeniowski and Wiedmer, reached the highest score in an audio chord recognition task. In the present paper, this tool is assessed under acoustic reverberant environments and distinct source-microphone distances. The evaluation dataset comprises The Beatles and Queen datasets. These datasets are sequentially re-recorded with a single microphone in a real reverberant chamber at four reverberation times (0 -anechoic-, 1, 2, and 3 s, approximately), as well as four source-microphone distances (32, 64, 128, and 256 cm). It is expected that the performance of the trained DNN will dramatically decrease under these acoustic conditions with signals degraded by room reverberation and distance to the source. Recently, the effect of the bio-inspired Locally-Normalized Cepstral Coefficients (LNCC), has been assessed in a text independent speaker verification task using speech signals degraded by additive noise at different signal-to-noise ratios with variations of recording distance, and it has also been assessed under reverberant conditions with variations of recording distance. LNCC showed a performance so high as the state-of-the-art Mel Frequency Cepstral Coefficient filters. Based on these results, this paper proposes a variation of locally-normalized triangular filters called Locally-Normalized Quarter Tone (LNQT) filters. By using the LNQT spectrogram, robustness improvements of the trained Deep Chroma Extractor are expected, compared with classical triangular filters, and thus compensating the music signal degradation improving the accuracy of the chord recognition system.
Effect of Noise Reduction Algorithms on Temporal Splitting of Speech Signal to Improve Speech Perception for Binaural Hearing Aids
Increased temporal masking affects the speech perception in persons with sensorineural hearing impairment especially under adverse listening conditions. This paper presents a cascaded scheme, which employs a noise reduction algorithm as well as temporal splitting of the speech signal. Earlier investigations have shown that by splitting the speech temporally and presenting alternate segments to the two ears help in reducing the effect of temporal masking. In this technique, the speech signal is processed by two fading functions, complementary to each other, and presented to left and right ears for binaural dichotic presentation. In the present study, half cosine signal is used as a fading function with crossover gain of 6 dB for the perceptual balance of loudness. Temporal splitting is combined with noise reduction algorithm to improve speech perception in the background noise. Two noise reduction schemes, namely spectral subtraction and Wiener filter are used. Listening tests were conducted on six normal-hearing subjects, with sensorineural loss simulated by adding broadband noise to the speech signal at different signal-to-noise ratios (∞, 3, 0, and -3 dB). Objective evaluation using PESQ was also carried out. The MOS score for VCV syllable /asha/ for SNR values of ∞, 3, 0, and -3 dB were 5, 4.46, 4.4 and 4.05 respectively, while the corresponding MOS scores for unprocessed speech were 5, 1.2, 0.9 and 0.65, indicating significant improvement in the perceived speech quality for the proposed scheme compared to the unprocessed speech.
Micromechanical Determination of the Mechanical Properties of Carbon Nanotube-Polymer Composites with a Functionally Graded Interphase
There have been numerous attempts at modelling carbon nanotube – polymer composites micromechanically in recent years, albeit to limited success. One of the major setbacks of the models used in the scientific community is the lack of regard to the different phases present in a nanocomposite. We employ a multi-phase micromechanical model that allows functionally grading certain phases to determine the mechanical properties of nanocomposites. The model has four distinct phases; the nanotube, the interface between the nanotube and polymer, the interphase, and the bulk matrix. Among the four phases, the interphase is functionally graded such that its moduli gradually decrease from some predetermined values to those of the bulk polymer. We find that the interface plays little role in stiffening/softening of the polymer per se , but instead, it is responsible for load transfer between the polymer and the carbon nanotube. Our results indicate that the carbon nanotube, as well as the interphase, have significant roles in stiffening the composite. The results are then compared to experimental findings and the interphase is tuned accordingly.
Welding Technology Developments for Stringer-Skin Joints with Al-Li Alloys
Manufacturing aeronautic structures joining extruded profiles or stringers to sheets or skins of aluminium is a typical manufacturing procedure in aeronautic structures. Although riveting is the conventional manufacturing technology to produce such joints, the Friction Stir Welding (FSW) and Laser Beam Welding (LBW) technologies have also demonstrated their potential for this kind of applications. Therefore, FSW and LBW technologies have the potential to continue their development as manufacturing processes for aeronautic structures showing benefits such as time-saving, light-weighting and overall cost reduction. In addition to that, new aluminium-lithium based alloy developments represent great opportunities for advanced aeronautic structure manufacturing with potential benefits such as lightweight construction or improved corrosion resistance. This work presents the main approaches by FSW and LBW to develop those technologies to produce stiffened panel structures such as fuselage by stringer-skin joints and using innovative aluminium-lithium alloys. Initial welding tests were performed in AA2198-T3S aluminium alloys for LBW technology and with AA2198-T851 for FSW. Later tests for both FSW and LBW have been carried out using AA2099-T83 alloy extrusions as stringers and AA2060-T8E30 as skin materials. The weld quality and properties have been examined by metallographic analysis and mechanical testing, including shear tensile tests and pull-out tests. The analysis of the results have shown the relationships between processing conditions, micro-macrostructural properties and the mechanical strength of the welded joints. The effects produced in the different alloys investigated have been observed and particular weld formation mechanics have been studied for each material and welding technology. Therefore, relationships between welding conditions and the obtained weld properties for each material combination and welding technology will be discussed in this presentation.
Implementation of a Low-Cost Instrumentation for an Open Cycle Wind Tunnel to Evaluate Pressure Coefficient
Wind tunnel experiments for aerodynamic profiles displays numerous advantages, such as: clean steady laminar flow, controlled environmental conditions, streamlines visualization, and real data acquisition. However, the experiment instrumentation usually is expensive, and hence, each test implies a incremented in design cost. The aim of this work is to select and implement a low-cost static pressure data acquisition system for a NACA 2412 airfoil in an open cycle wind tunnel. This work compares wind tunnel experiment with CFD simulation and parametric analysis. The experiment was evaluated at Reynolds of 1.65 e^5 , with increasing angles from -5 to 15 degrees. The comparison between the approaches show good enough accuracy, between experiment and CFD, additionally parametric analysis results differ widely from the other methods, which complies with the lack of accuracy of the lateral approach due its simplicity.
Impinging Acoustics Induced Combustion: An Alternative Technique to Prevent Thermoacoustic Instabilities
Efficient propulsive systems development is an area of major interest and concern in aerospace industry. Combustion forms the most reliable and basic form of propulsion for ground and space applications. The generation of large amount of energy from a small volume relates mostly to the flaming combustion. This study deals with instabilities associated with flaming combustion. Combustion is always accompanied by acoustics be it external or internal. Chemical propulsion oriented rockets and space systems are well known to encounter acoustic instabilities. Acoustic brings in changes in inter-energy conversion and alter the reaction rates. The modified heat fluxes, owing to wall temperature, reaction rates, and non-linear heat transfer are observed. The thermoacoustic instabilities significantly result in reduced combustion efficiency leading to uncontrolled liquid rocket engine performance, serious hazards to systems, assisted testing facilities, enormous loss of resources and every year a substantial amount of money is spent to prevent them. Present work attempts to fundamentally understand the mechanisms governing the thermoacoustic combustion in liquid rocket engine using a simplified experimental setup comprising a butane cylinder and an impinging acoustic source. Rocket engine produces sound pressure level in excess of 153 Db. The RL-10 engine generates noise of 180 Db at its base. Systematic studies are carried out for varying fuel flow rates, acoustic levels and observations are made on the flames. The work is expected to yield a good physical insight into the development of acoustic devices that when coupled with the present propulsive devices could effectively enhance combustion efficiency leading to better and safer missions. The results would be utilized to develop impinging acoustic devices that impinge sound on the combustion chambers leading to stable combustion thus, improving specific fuel consumption, specific impulse, reducing emissions, enhanced performance and fire safety. The results can be effectively applied to terrestrial and space application.
Optimization of Heat Source Assisted Combustion on Solid Rocket Motors
Solid Propellant ignition consists of rapid and complex events comprising of heat generation and transfer of heat with spreading of flames over the entire burning surface area. Proper combustion and thus propulsion depends heavily on the modes of heat transfer characteristics and cavity volume. Fire safety is an integral component of a successful rocket flight failing to which may lead to overall failure of the rocket. This leads to enormous forfeiture in resources viz., money, time, and labor involved. When the propellant is ignited, thrust is generated and the casing gets heated up. This heat adds on to the propellant heat and the casing, if not at proper orientation starts burning as well, leading to the whole rocket being completely destroyed. This has necessitated active research efforts emphasizing a comprehensive study on the inter-energy relations involved for effective utilization of the solid rocket motors for better space missions. Present work is focused on one of the major influential aspects of this detrimental burning which is the presence of an external heat source, in addition to a potential heat source which is already ignited. The study is motivated by the need to ensure better combustion and fire safety presented experimentally as a simplified small-scale mode of a rocket carrying a solid propellant inside a cavity. The experimental setup comprises of a paraffin wax candle as the pilot fuel and incense stick as the external heat source. The candle is fixed and the incense stick position and location is varied to investigate the find the influence of the pilot heat source. Different configurations of the external heat source presence with separation distance are tested upon. Regression rates of the pilot thin solid fuel are noted to fundamentally understand the non-linear heat and mass transfer which is the governing phenomenon. An attempt is made to understand the phenomenon fundamentally and the mechanism governing it. Results till now indicate non-linear heat transfer assisted with the occurrence of flaming transition at selected critical distances. With an increase in separation distance, the effect is noted to drop in a non-monotonic trend. The parametric study results are likely to provide useful physical insight about the governing physics and utilization in proper testing, validation, material selection, and designing of solid rocket motors with enhanced safety.
An Experimental Study on the Coupled Heat Source and Heat Sink Effects on Solid Rockets
Enhancing the rocket efficiency by controlling the external factors in solid rockets motors has been an active area of research for most of the terrestrial and extra-terrestrial system operations. Appreciable work has been done, but the complexity of the problem has prevented thorough understanding due to heterogenous heat and mass transfer. On record, severe issues have surfaced amounting to irreplaceable loss of mankind, instruments, facilities, and huge amount of money being invested every year. The coupled effect of an external heat source and external heat sink is an aspect yet to be articulated in combustion. Better understanding of this coupled phenomenon will induce higher safety standards, efficient missions, reduced hazard risks, with better designing, validation, and testing. The experiment will help in understanding the coupled effect of an external heat sink and heat source on the burning process, contributing in better combustion and fire safety, which are very important for efficient and safer rocket flights and space missions. Safety is the most prevalent issue in rockets, which assisted by poor combustion efficiency, emphasizes research efforts to evolve superior rockets. This signifies real, engineering, scientific, practical, systems and applications. One potential application is Solid Rocket Motors (S.R.M). The study may help in: (i) Understanding the effect on efficiency of core engines due to the primary boosters if considered as source, (ii) Choosing suitable heat sink materials for space missions so as to vary the efficiency of the solid rocket depending on the mission, (iii) Giving an idea about how the preheating of the successive stage due to previous stage acting as a source may affect the mission. The present work governs the temperature (resultant) and thus the heat transfer which is expected to be non-linear because of heterogeneous heat and mass transfer. The study will deepen the understanding of controlled inter-energy conversions and the coupled effect of external source/sink(s) surrounding the burning fuel eventually leading to better combustion thus, better propulsion. The work is motivated by the need to have enhanced fire safety and better rocket efficiency. The specific objective of the work is to understand the coupled effect of external heat source and sink on propellant burning and to investigate the role of key controlling parameters. Results as of now indicate that there exists a singularity in the coupled effect. The dominance of the external heat sink and heat source decides the relative rocket flight in Solid Rocket Motors (S.R.M).
A Spatial Perspective on the Metallized Combustion Aspect of Rockets
Solid Propellant Rocket is a rocket that utilises a combination of a solid Oxidizer and a solid Fuel. Success in Solid Rocket Motor design and development depends significantly on knowledge of burning rate behaviour of the selected solid propellant under all motor operating conditions and design limit conditions. Most Solid Motor Rockets consist of the Main Engine, along with multiple Boosters that provide an additional thrust to the space-bound vehicle. Though widely used, they have been eclipsed by Liquid Propellant Rockets, because of their better performance characteristics. The addition of a catalyst such as Iron Oxide, on the other hand, can drastically enhance the performance of a Solid Rocket. This scientific investigation tries to emulate the working of a Solid Rocket using Sparklers and Energized Candles, with a central Energized Candle acting as the Main Engine and surrounding Sparklers acting as the Booster. The Energized Candle is made of Paraffin Wax, with Magnesium filings embedded in it’s wick. The Sparkler is made up of 45% Barium Nitrate, 35% Iron, 9% Aluminium, 10% Dextrin and the remaining composition consists of Boric Acid. The Magnesium in the Energized Candle, and the combination of Iron and Aluminium in the Sparkler, act as catalysts and enhance the burn rates of both materials. This combustion of Metallized Propellants has an influence over the regression rate of the subject candle. The experimental parameters explored here are Separation Distance, Systematically varying Configuration and Layout Symmetry. The major performance parameter under observation is the Regression Rate of the Energized Candle. The rate of regression is significantly affected by the orientation and configuration of the sparklers, which usually act as heat sources for the energized candle. The Overall Efficiency of any engine is factorised by the thermal and propulsive efficiencies. Numerous efforts have been made to improve one or the other. This investigation focuses on the Orientation of Rocket Motor Design to maximize their Overall Efficiency. The primary objective is to analyse the Flame Spread Rate variations of the energized candle, which resembles the solid rocket propellant used in the first stage of rocket operation thereby affecting the Specific Impulse values in a Rocket, which in turn have a deciding impact on their Time of Flight. Another objective of this research venture is to determine the effectiveness of the key controlling parameters explored. This investigation also emulates the exhaust gas interactions of the Solid Rocket through concurrent ignition of the Energized Candle and Sparklers, and their behaviour is analysed. Modern space programmes intend to explore the universe outside our solar system. To accomplish these goals, it is necessary to design a launch vehicle which is capable of providing incessant propulsion along with better efficiency for vast durations. The main motivation of this study is to enhance Rocket performance and their Overall Efficiency through better designing and optimization techniques, which will play a crucial role in this human conquest for knowledge.
Experiment on Free and Forced Heat Transfer and Pressure Drop of Copper Oxide-Heat Transfer Oil Nanofluid (CuO-HTO) in Horizontal and Inclined Microfin Tube
In this paper, the combined free and forced convection heat transfer of the CuO-HTO nanofluid flow in horizontal and inclined microfin tubes is studied experimentally. The flow regime is laminar and pipe surface temperature is constant. The effect of nanoparticle and microfin tube on the heat transfer rate is investigated as the Richardson number is between 0.1 and 0.7. The results show an increasing nanoparticle concentration between 0% and 1.5% leads to enhance the combined free and forced convection heat transfer rate. According to the results, five correlations are proposed to provide estimating the free and forced heat transfer rate as the increasing Richardson number from 0.1 to 0.7. The maximum deviation of both correlations is less than 16%. Moreover, four correlation is suggested to assess the Nusselt number based on the Rayleigh number in inclined tubes from 1800000 to 7000000. The maximum deviation of the correlation is almost 16%. The Darcy friction factor of the nanofluid flow has been investigated. Furthermore, (CuO-HTO) nanofluid flows in inclined microfin tubes.
Static Stress and Thermal Analysis of Connecting Rod Using Fe-Analysis for Material Optimization
In series of automobile engine components, a connecting rod is used to convert linear motion of the piston to reciprocating motion of the crankshaft. In this paper, the static and thermal stress analysis of connecting rod made up of 42CrMo4 is conducted, using finite element method. After measuring the dimension of connecting rod, the model is developed in Solidworks software and imported to Solidworks Simulation software. Static stress analysis is done by fixing the crank end and the load is applied at the piston end of connecting rod. Maximum stress point and section prone to failure is found out by this analysis. Also, the thermal analysis of the connecting rod is performed. The purpose of this study is to show the performance of connecting rod under different loading condition with a considerable reduction in weight.
Aerodynamic Design and Optimization of Vertical Take-Off and Landing Type Unmanned Aerial Vehicles
The airplane history started with the Wright brothers' aircraft and improved day by day. With the help of this advancements, big aircrafts replace with small and unmanned air vehicles, so in this study we design this type of air vehicles. First of all, aircrafts mainly divided into two main parts in our day as a rotary and fixed wing aircrafts. The fixed wing aircraft generally use for transport, cargo, military and etc. The rotary wing aircrafts use for same area but there are some superiorities from each other. The rotary wing aircraft can take off vertically from the ground, and it can use restricted area. On the other hand, rotary wing aircrafts generally can fly lower range than fixed wing aircraft. There are one kind of aircraft consist of this two types specifications. It is named as VTOL (vertical take-off and landing) type aircraft. VTOLs are able to takeoff and land vertically and fly horizontally. The VTOL aircrafts generally can fly higher range from the rotary wings but can fly lower range from the fixed wing aircraft but it gives beneficial range between them. There are many other advantages of VTOL aircraft from the rotary and fixed wing aircraft. Because of that, VTOLs began to use for generally military, cargo, search, rescue and mapping areas. Within this framework, this study answers the question that how can we design VTOL as a small unmanned aircraft systems for search and rescue application for benefiting the advantages of fixed wing and rotary wing aircrafts by eliminating the disadvantages of them. To answer that question and design VTOL aircraft, multidisciplinary design optimizations (MDO), some theoretical terminologies, formulations, simulations and modelling systems based on CFD (Computational Fluid Dynamics) is used in same time as design methodology to determine design parameters and steps. As a conclusion, based on tests and simulations depend on design steps, suggestions on how the VTOL aircraft designed and advantages, disadvantages, and observations for design parameters are listed, then VTOL is designed and presented with the design parameters, advantages, and usage areas.
Experimental and Numerical Study on Energy Absorption Characteristic of a Coupler Rubber Buffer Used in Rail Vehicles
Coupler rubber buffer has been widely applied on the high-speed trains and the main function of the rubber buffer is dissipating the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are both pre-compressed and then installed into the frame body. This work focuses on the energy absorption capacity of each group of buffers particularly. The quasi-static compression tests were carried out to obtain the pre-compression force and the load-defection response of the buffers. Then a finite element (FE) model was constructed using Ls_dyna program. The rubber material was modeled with a tabulated method easily, in which no more material constants need to be fitted. The simulation results agreed with the experimental results well. Numerical study of the buffers was performed using the validated FE model and the influence of the initial pressure on the buffers was obtained. In addition, the interaction between the two groups of buffers was also investigated and the optimum distribution of the two was found.
Design and Manufacture of a Hybrid Gearbox Reducer System
Due to mechanical energy losses and a competitive of minimizing these losses and increases the machine efficiency, the need for contactless gearing system has raised. In this work, one stage of mechanical planetary gear transmission system integrated with one stage of magnetic planetary gear system is designed as a two-stage hybrid gearbox system. The permanent magnets internal energy in the form of the magnetic field is used to create meshing between contactless magnetic rotors in order to provide self-system protection against overloading and decrease the mechanical loss of the transmission system by eliminating the friction losses. Classical methods, such as analytical, tabular method and the theory of elasticity are used to calculate the planetary gear design parameters. The finite element method (ANSYS Maxwell) is used to predict the behaviors of a magnetic gearing system. The concentric magnetic gearing system has been modeled and analyzed by using 2D finite element method (ANSYS Maxwell). In addition to that, design and manufacturing processes of prototype components (a planetary gear, concentric magnetic gear, shafts and the bearings selection) of a gearbox system are investigated. The output force, the output moment, the output power and efficiency of the hybrid gearbox system are experimentally evaluated. The viability of applying a magnetic force to transmit mechanical power through a non-contact gearing system is presented. The experimental test results show that the system is capable to operate continuously within the range of speed from 400 rpm to 3000 rpm with the reduction ratio of 2:1 and maximum efficiency of 91%.
Enhanced Flight Dynamics Model to Simulate the Aircraft Response to Gust Encounters
The effect of gust and turbulence encounters on aircraft is a wide field of study which allows different approaches, from high-fidelity multidisciplinary simulations to more simplified models adapted to industrial applications. The typical main goal is to predict the gust loads on the aircraft in order to ensure a safe design and achieve certification. Another topic widely studied is the gust loads reduction through an active control law. The impact of gusts on aircraft handling qualities is of interest as well in the analysis of in-service events so as to evaluate the aircraft response and the performance of the flight control laws. Traditionally, gust loads and handling qualities are addressed separately with different models adapted to the specific needs of each discipline. In this paper, an assessment of the differences between both models is presented and a strategy to better account for the physics of gust encounters in a typical flight dynamics model is proposed based on the model used for gust loads analysis. The applied corrections aim to capture the gust unsteady aerodynamics and propagation as well as the effect of dynamic flexibility at low frequencies. Results from the gust loads model at different flight conditions and measures from real events are used for validation. An assessment of a possible extension of steady aerodynamic nonlinearities to low frequency range is also addressed. The proposed corrections provide meaningful means to evaluate the performance and possible adjustments of the flight control laws.
The Effect of Floor Impact Sound Insulation Performance Using Scrambled Thermoplastic Poly Urethane and Ethylene Vinyl Acetate
Most of apartments in Korea have wall type structure that present poor performance regarding floor impact sound insulation. In order to minimize the transmission of floor impact sound, flooring structures are used in which an insulating material, 30 mm thickness pad of EPS or EVA, is sandwiched between a concrete slab and the finished mortar. Generally, a single-material pad used for insulation has a heavyweight impact sound level of 44~47 dB with 210 mm thickness slab. This study provides an analysis of the floor impact sound insulation performance using thermoplastic poly urethane (TPU), ethylene vinyl acetate (EVA), and expanded polystyrene (EPS) materials with buffering performance. Following mock-up tests the effect of lightweight impact sound turned out to be similar but heavyweight impact sound was decreased by 3 dB compared to conventional single material insulation pad.
Effect of Fuel Type on Design Parameters and Atomization Process for Pressure Swirl Atomizer and Dual Orifice Atomizer for High Bypass Turbofan Engine
Atomizers are used in many engineering applications including diesel engines, petrol engines and spray combustion in furnaces as well as gas turbine engines. These atomizers are used to increase the specific surface area of the fuel, which achieve a high rate of fuel mixing and evaporation. In all combustion systems reduction in mean drop size is a challenge which has many advantages since it leads to rapid and easier ignition, higher volumetric heat release rate, wider burning range and lower exhaust concentrations of the pollutant emissions. Pressure atomizers have a different configuration for design such as swirl atomizer (simplex), dual orifice, spill return, plain orifice, duplex and fan spray. Simplex pressure atomizers are the most common type of all. Among all types of atomizers, pressure swirl types resemble a special category since they differ in quality of atomization, the reliability of operation, simplicity of construction and low expenditure of energy. But, the disadvantages of these atomizers are that they require very high injection pressure and have low discharge coefficient owing to the fact that the air core covers the majority of the atomizer orifice. To overcome these problems, dual orifice atomizer was designed. This paper proposes a detailed mathematical model design procedure for both pressure swirl atomizer (Simplex) and dual orifice atomizer, examines the effects of varying fuel type and makes a clear comparison between the two types. Using five types of fuel (JP-5, JA1, JP-4, Diesel and Bio-Diesel) as a case study, reveal the effect of changing fuel type and its properties on atomizers design and spray characteristics. Which effect on combustion process parameters; Sauter Mean Diameter (SMD), spray cone angle and sheet thickness with varying the discharge coefficient from 0.27 to 0.35 during takeoff for high bypass turbofan engines. The spray atomizer performance of the pressure swirl fuel injector was compared to the dual orifice fuel injector at the same differential pressure and discharge coefficient using Excel. The results are analyzed and handled to form the final reliability results for fuel injectors in high bypass turbofan engines. The results show that the Sauter Mean Diameter (SMD) in dual orifice atomizer is larger than Sauter Mean Diameter (SMD) in pressure swirl atomizer, the film thickness (h) in dual orifice atomizer is less than the film thickness (h) in pressure swirl atomizer. The Spray Cone Angle (α) in pressure swirl atomizer is larger than Spray Cone Angle (α) in dual orifice atomizer.
Experimental and Numerical Investigations of Impact Response on High-Speed Train Windshield
Security journey is a vital focus on the field of Rail Transportation. Accidents caused by the damage of the high-speed train windshield have occurred many times and have given rise to terrible consequences. Train windshield consists of tempered glass and polyvinyl butyral (PVB) film. In this work, the quasi-static tests and the split Hopkinson pressure bar (SHPB) tests were carried out first to obtain the mechanical properties and constitutive model for the tempered glass and PVB film. These tests results revealed that stress and Young’s modulus of tempered glass were wake-sensitive to strain rate, but stress and Young’s modulus of PVB film were strong-sensitive to strain rate. Then impact experiment of the windshield was carried out to investigate dynamic response and failure characteristics of train windshield. In addition, a finite element model based on the combined finite element method was proposed to investigate fracture and fragmentation responses of train windshield under different-velocity impact. The results can be used for further design and optimization of the windshield for high-speed train application.
Energy Absorption Characteristic of a Coupler Rubber Buffer Used in Rail Vehicles
Coupler rubber buffer has been widely applied on the high-speed trains and the main function of the rubber buffer is dissipating the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are both pre-compressed and then installed into the frame body. This paper focuses on the energy absorption characteristics of the rubber buffers particularly. Firstly, the quasi-static compression tests were carried out for 1 and 3 pairs of rubber sheets and some energy absorption responses relationship, i.e. Eabn = n×Eab1, Edissn = n×Ediss1, and Ean = Ea1, were obtained. Next, a series of quasi-static tests were performed for 1 pair of rubber sheet to investigate the energy absorption performance with different compression ratio of the rubber buffers. Then the impact tests with five impact velocities were conducted and the coupler knuckle was destroyed when the impact velocity was 10.807 km/h. The impact tests results showed that with the increase of impact velocity, the Eab, Ediss and Ea of rear buffer increased a lot, but the three responses of front buffer had not much increase. Finally, the results of impact tests and quasi-static tests were contrastively analysed and the results showed that with the increase of the stroke, the values of Eab, Ediss, and Ea were all increase. However, the increasing rates of impact tests were all larger than that of quasi-static tests. The maximum value of Ea was 68.76% in impact tests, it was a relatively high value for vehicle coupler buffer. The energy capacity of the rear buffer was determined for dynamic loading, it was 22.98 kJ.
Impact Tensile Mechanical Properties of 316L Stainless Steel at Different Strain Rates
316L stainless steel has good mechanical and technological properties, has been widely used in shipbuilding and aerospace manufacturing. In order to understand the effect of strain rate on the yield limit of 316L stainless steel and the constitutive relationship of the materials at different strain rates, this paper used the INSTRON-4505 electronic universal testing machine to study the mechanical properties of the tensile specimen under quasi-static conditions. Meanwhile, the Zwick-Roell RKP450 intelligent oscillometric impact tester was used to test the tensile specimens at different strain rates. Through the above two kinds of experimental researches, the relationship between the true stress-strain and the engineering stress-strain at different strain rates is obtained. The result shows that the tensile yield point of 316L stainless steel increases with the increase of strain rate, and the real stress-strain curve of the 316L stainless steel has a better normalization than that of the engineering stress-strain curve. The real stress-strain curves can be used in the practical engineering of impact stretch to improve its safety.